Reputation: 49
My row values are
[1,2,3,4,5,6,7,8]
, and column_names ['col1','col2','col3','col4','col5','col6','col7']
How do I make a single dataframe for pandas, like this:
col1 col2 col3 col4 col5 col6 col7
1 2 3 4 5 6 7
Upvotes: 1
Views: 1491
Reputation: 163
If you meant filtering an existing df you could do It in many ways, here is my suggestion:
#first you create the auxiliary lists
values = [1,2,3,4,5,6,7,8]
cols = ['col1','col2','col3','col4','col5','col6','col7']
#next, you create a filter for each column
bool_filter = None
for col, value in zip(cols, values):
if is None bool_filter:
bool_filter = df[col] == value
else:
bool_filter = bool_filter & (df[col] == value)
#finnaly apply it to the df
df[bool_filter]
Upvotes: 0
Reputation: 863166
Use nested list:
new_df = pd.DataFrame([[1,2,3,4,5,6,7]],
columns=['col1','col2','col3','col4','col5','col6','col7'])
print (new_df)
col1 col2 col3 col4 col5 col6 col7
0 1 2 3 4 5 6 7
Upvotes: 4