Reputation: 935
I have these two dataframes :
df = pd.DataFrame({'Points' : ['A','B','C','D','E'],'ColY' : [1,2,3,4,5]})
df
Points ColY
0 A 1
1 B 2
2 C 3
3 D 4
4 E 5
df2 = pd.DataFrame({'Points' : ['A','D'],'ColX' : [2,9]})
df2
Points ColX
0 A 2
1 D 9
And these two functions :
# equivalent of the Excel vlookup function applied to a dataframe
def vlookup(df,ref,col_ref,col_goal):
return pd.DataFrame(df[df.apply(lambda x: ref == x[col_ref],axis=1)][col_goal]).iloc[0,0]
# if x is in column Points of df2, return what is in column ColX in the same row
def update_if_belong_to_df2(x):
if x in df2['Points']:
return vlookup(df2,x,'Points','ColX')
return x
I would like to apply the function update_if_belong_to_df2 to the column ColY of df. I tried the following but it doesn't work :
df['ColY'] = df['ColY'].apply(lambda x : update_if_belong_to_df2(x))
I would like to get :
df
Points ColY
0 A 2
1 B 2
2 C 3
3 D 9
4 E 5
Could you please help me to understand why ? Thanks
Upvotes: 0
Views: 96
Reputation: 323396
I will do merge
df=df.merge(df2,how='left')
df.ColX=df.ColX.fillna(df.ColY)
df
Points ColY ColX
0 A 1 2.0
1 B 2 2.0
2 C 3 3.0
3 D 4 9.0
4 E 5 5.0
Upvotes: 3
Reputation: 6642
Use pandas update
instead:
df = pd.DataFrame({'Points' : ['A','B','C','D','E'],'ColY' : [1,2,3,4,5]})
df2 = pd.DataFrame({'Points' : ['A','D'],'ColX' : [2,9]})
df = df.set_index('Points')
df.update(df2.set_index('Points').rename(columns={'ColX': 'ColY'}))
df.reset_index()
Points ColY
0 A 2.0
1 B 2.0
2 C 3.0
3 D 9.0
4 E 5.0
Upvotes: 2
Reputation: 150825
IIUC, your problem is easier with map
and fillna
:
df['ColY'] = (df['Points'].map(df2.set_index('Points')['ColX'])
.fillna(df['ColY'])
)
Output:
Points ColY
0 A 2.0
1 B 2.0
2 C 3.0
3 D 9.0
4 E 5.0
Upvotes: 2