Reputation: 225
I have some 100 dataframes that need to be filled in another big dataframe. Presenting the question with two dataframes
import pandas as pd
df1 = pd.DataFrame([1,1,1,1,1], columns=["A"])
df2 = pd.DataFrame([2,2,2,2,2], columns=["A"])
Please note that both the dataframes have same column names.
I have a master dataframe that has repetitive index values as follows:-
master_df=pd.DataFrame(index=df1.index)
master_df= pd.concat([master_df]*2)
Expected Output:-
master_df['A']=[1,1,1,1,1,2,2,2,2,2]
I am using for loop to replace every n rows of master_df with df1,df2... df100. Please suggest a better way of doing it. In fact df1,df2...df100 are output of a function where the input is column A values (1,2). I was wondering if there is something like
another_df=master_df['A'].apply(lambda x: function(x))
Thanks in advance.
Upvotes: 1
Views: 206
Reputation: 221
If you want to concatenate the dataframes you could just use pandas concat with a list as the code below shows.
First you can add df1 and df2 to a list:
df_list = [df1, df2]
Then you can concat the dfs:
master_df = pd.concat(df_list)
I used the default value of 0 for 'axis' in the concat function (which is what I think you are looking for), but if you want to concatenate the different dfs side by side you can just set axis=1.
Upvotes: 2