Reputation: 4329
I have a mask
array which represents a 2-dimensional binary image. Let's say it's simply:
mask = np.zeros((9, 9), dtype=np.uint8)
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# ------+-------+------
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# ------+-------+------
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
Suppose I want to flip the elements in the middle left ninth:
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# ------+-------+------
# 1 1 1 | 0 0 0 | 0 0 0
# 1 1 1 | 0 0 0 | 0 0 0
# 1 1 1 | 0 0 0 | 0 0 0
# ------+-------+------
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
My incorrect approach was something like this:
x = np.arange(mask.shape[0])
y = np.arange(mask.shape[1])
mask[np.logical_and(y >= 3, y < 6), x < 3] = 1
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# ------+-------+------
# 1 0 0 | 0 0 0 | 0 0 0
# 0 1 0 | 0 0 0 | 0 0 0
# 0 0 1 | 0 0 0 | 0 0 0
# ------+-------+------
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
# 0 0 0 | 0 0 0 | 0 0 0
(This is a simplification of the constraints I'm really dealing with, which would not be easily expressed as something like mask[:3,3:6] = 1
as in this case. Consider the constraints arbitrary, like x % 2 == 0 && y % 3 == 0
if you will.)
Numpy's behavior when the two index arrays are the same shape is to take them pairwise, which ends up only selecting the 3 elements above, rather than 9 I would like.
How would I update the right elements with constraints that apply to different axes? Given that the constraints are independent, can I do this by only evaluating my constraints N+M times, rather than N*M?
Upvotes: 2
Views: 41
Reputation: 231385
You can't broadcast
the boolean arrays, but you can construct the equivalent numeric indices with ix_
:
In [330]: np.ix_((y>=3)&(y<6), x<3)
Out[330]:
(array([[3],
[4],
[5]]), array([[0, 1, 2]]))
Applying it:
In [331]: arr = np.zeros((9,9),int)
In [332]: arr[_330] = 1
In [333]: arr
Out[333]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
Attempting to broadcast
the booleans directly raises an error (too many indices
):
arr[((y>=3)&(y<6))[:,None], x<3]
Upvotes: 1
Reputation: 150735
Per your comment, let's try this fancier example:
mask = np.zeros((90,90), dtype=np.uint8)
# criteria
def f(x,y): return ((x-20)**2 < 50) & ((y-20)**2 < 50)
# ranges
x,y = np.arange(90), np.arange(90)
# meshgrid
xx,yy = np.meshgrid(x,y)
zz = f(xx,yy)
# mask
mask[zz] = 1
plt.imshow(mask, cnap='gray')
Output:
Upvotes: 1