Reputation: 509
I have a column with missing values after a certain number of rows, and another column with missing values up to that point. How can I join the two columns so that I have one column with all the values?
Columns as is:
COL 1 COL 2
0 A NaN
1 B NaN
2 C NaN
3 NaN D
4 NaN E
5 NaN F
Expected output:
COL 1
0 A
1 B
2 C
3 D
4 E
5 F
Upvotes: 2
Views: 580
Reputation: 2222
You have to use fillna() with 'COL2' values on 'COL1' and then drop 'COL2'
df['COL1'] = df['COL1'].fillna(df['COL2'])
df = df.drop(columns='COL2')
Upvotes: 1
Reputation: 863541
Use Series.fillna
or Series.combine_first
:
df['COL 1'] = df['COL 1'].fillna(df['COL 2'])
df['COL 1'] = df['COL 1'].combine_first(df['COL 2'])
If want also remove second column add DataFrame.pop
:
df['COL 1'] = df['COL 1'].fillna(df.pop('COL 2'))
#df['COL 1'] = df['COL 1'].combine_first(df.pop('COL 2'))
Upvotes: 5