Reputation: 105
Suppose two Series
a = [1,2,3,4,5]
,
b = [60,7,80,9,100]
I would like to create a new variable, which will be calculated as follows:
C = a/b if b >10 else a/b +1
I can do this by using list comprenhension by the following way:
C = [a[i] \b[i] if b[i] > 10 else a[i] \b[i] +1 for i in range(len(b))]
My Question is the following:
Is there another way (e.g using lambda,map,apply etc.) so as to avoid the for loop? (Series a,b,c can also be part of a pd.Dataframe)
Upvotes: 1
Views: 158
Reputation: 862661
First idea is divide values and add 1
by condition - convert mask to integers 1
and 0
:
c = a/b + (b <=10).astype(int)
#alternative
#c = a/b + (~(b > 10)).astype(int)
Or add array created by numpy.where
:
c = a/b + np.where(b > 10, 0, 1)
If want divide 2 times it is also possible (should be a bit slowier in large data)
c = pd.Series(np.where(b >10, a/b, a/b +1), index=a.index)
print (c)
0 0.016667
1 1.285714
2 0.037500
3 1.444444
4 0.050000
dtype: float64
Setup:
a = pd.Series([1,2,3,4,5])
b = pd.Series([60,7,80,9,100])
Performance:
np.random.seed(2019)
a = pd.Series(np.random.randint(1,100, size=100000))
b = pd.Series(np.random.randint(1,100, size=100000))
In [322]: %timeit [a[i] /b[i] if b[i] > 10 else a[i] /b[i] +1 for i in range(len(b))]
3.08 s ± 84.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [323]: %timeit a/b + (b <=10).astype(int)
1.71 ms ± 44.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [324]: %timeit a/b + np.where(b > 10, 0, 1)
1.67 ms ± 66.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [325]: %timeit np.where(b >10, a/b, a/b +1)
2.7 ms ± 13.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [326]: %timeit pd.Series(np.where(b >10, a/b, a/b +1), index=a.index)
2.74 ms ± 21.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Upvotes: 1