Reputation: 381
I am wondering how you make sure you are not adding the same person twice in your EventStore?
lets say that on you application you add person data but you want to make sure that the same person name and birthday is not added twice in different streams.
Do you ask you ReadModels or do you do it within your Evenstore?
Upvotes: 0
Views: 171
Reputation: 1345
If you are going to validate this kind of thing then it should be done in the aggregate itself IMO, and you'd have to use use read models for that like you say. But you end up infrastructure code/dependencies being sent into your aggregates/passed into your methods.
In this case I'd suggest creating a read model of Person.Id
, Person.Name
, Person.Birthday
and then instead of creating a Person
directly, create some service which uses the read model table to look up whether or not a row exists and either give you that aggregate back or create a new one and give that back. Then you won't need to validate at all, so long as all Person-creation is done via this service.
Upvotes: 1
Reputation: 57279
I am wondering how you make sure you are not adding the same person twice in your EventStore?
The generalized form of the problem that you are trying to solve is set validation.
Step #1 is to push back really hard on the requirement to ensure that the data is always unique - if it doesn't have to be unique always, then you can use a detect and correct approach. See Memories, Guesses, and Apologies by Pat Helland. Roughly translated, you do the best you can with the information you have, and back up if it turns out you have to revert an error.
If a uniqueness violation would expose you to unacceptable risk (for instance, getting sued to bankruptcy because the duplication violated government mandated privacy requirements), then you have to work.
To validate set uniqueness you need to lock the entire set; this lock could be pessimistic or optimistic in implementation. That's relatively straight forward when the entire set is stored in one place (which is to say, under a single lock), but something of a nightmare when the set is distributed (aka multiple databases).
If your set is an aggregate (meaning that the members of the set are being treated as a single whole for purposes of update), then the mechanics of DDD are straightforward. Load the set into memory from the "repository", make changes to the set, persist the changes.
This design is fine with event sourcing where each aggregate has a single stream -- you guard against races by locking "the" stream.
Most people don't want this design, because the members of the set are big, and for most data you need only a tiny slice of that data, so loading/storing the entire set in working memory is wasteful.
So what they do instead is move the responsibility for maintaining the uniqueness property from the domain model to the storage. RDBMS solutions are really good at sets. You define the constraint that maintains the property, and the database ensures that no writes which violate the constraint are permitted.
If your event store is a relational database, you can do the same thing -- the event stream and the table maintaining your set invariant are updated together within the same transaction.
If your event store isn't a relational database? Well, again, you have to look at money -- if the risk is high enough, then you have to discard plumbing that doesn't let you solve the problem with plumbing that does.
In some cases, there is another approach: encoding the information that needs to be unique into the stream identifier. The stream comes to represent "All users named Bob", and then your domain model can make sure that the Bob stream contains at most one active user at a time.
Then you start needing to think about whether the name Bob is stable, and which trade-offs you are willing to make when an unstable name changes.
Names of people is a particularly miserable problem, because none of the things we believe about names are true. So you get all of the usual problems with uniqueness, dialed up to eleven.
Upvotes: 1