Reputation: 143
I am trying to run the code
import data_processing as dp
import numpy as np
test_set = dp.read_data("./data2019-12-01.csv")
import tensorflow as tf
import keras
def train_model():
autoencoder = keras.Sequential([
keras.layers.Flatten(input_shape=[400]),
keras.layers.Dense(150,name='bottleneck'),
keras.layers.Dense(400,activation='sigmoid')
])
autoencoder.compile(optimizer='adam',loss='mse')
return autoencoder
trained_model=train_model()
trained_model.load_weights('./weightsfile.h5')
trained_model.evaluate(test_set,test_set)
The test_set in line 3 is of numpy array of shape (3280977,400). I am using keras 2.1.4 and tensorflow 1.5.
However, this puts out the following error
ValueError: Input 0 is incompatible with layer flatten_1: expected min_ndim=3, found ndim=2
How can I solve it? I tried changing the input_shape in flatten layer and also searched on the internet for possible solutions but none of them worked out. Can anyone help me out here? Thanks
Upvotes: 0
Views: 388
Reputation: 143
After much trial and error, I was able to run the code. This is the code which runs:-
import data_processing as dp
import numpy as np
test_set = np.array(dp.read_data("./datanew.csv"))
print(np.shape(test_set))
import tensorflow as tf
from tensorflow import keras
# import keras
def train_model():
autoencoder = keras.Sequential([
keras.layers.Flatten(input_shape=[400]),
keras.layers.Dense(150,name='bottleneck'),
keras.layers.Dense(400,activation='sigmoid')
])
autoencoder.compile(optimizer='adam',loss='mse')
return autoencoder
trained_model=train_model()
trained_model.load_weights('./weightsfile.h5')
trained_model.evaluate(test_set,test_set)
The change I made is I replaced
import keras
with
from tensorflow import keras
This may work for others also, who are using old versions of tensorflow and keras. I used tensorflow 1.5 and keras 2.1.4 in my code.
Upvotes: 1
Reputation: 15003
Keras and TensorFlow only accept batch input data for prediction.
You must 'simulate' the batch index dimension.
For example, if your data is of shape (M x N), you need to feed at the prediction step a tensor of form (K x M x N), where K is the batch_dimension.
Simulating the batch axis is very easy, you can use numpy to achieve that:
Using: np.expand_dims(axis = 0)
, for an input tensor of shape M x N, you now have the shape 1 x M x N. This why you get that error, that missing '1' or 'K', the third dimension is that batch_index.
Upvotes: 0