Marlin
Marlin

Reputation: 111

Python count number of occurrence of a value in a dataframe column

I have a dataframe like this:

enter image description here

This is the final dataframe that I want:

enter image description here

I know I can use groupby to count, but it only gives me the total number. How can I break down into the count per 'True' and 'False'. and arrange like this?

Upvotes: 3

Views: 114

Answers (2)

adhg
adhg

Reputation: 10863

Another way to do it is by groupby and unstack, such that:

df = df.groupby(["ID","PASS"])['PASS'].count().unstack(fill_value=0)
df['total'] = df['FALSE']+df['TRUE']

desired result:

PASS    FALSE   TRUE    Total
ID          
a         1       2      3
b         1       3      4
c         0       2      2

Upvotes: 0

mustnot
mustnot

Reputation: 159

import pandas as pd

data = [['a', 'TRUE'], ['a', 'FALSE'], ['a', 'TRUE'], ['b', 'TRUE'], ['b', 'TRUE'], ['b', 'TRUE'],
    ['b', 'FALSE'], ['c', 'TRUE'], ['c', 'TRUE']]
df = pd.DataFrame(data, columns=['ID', 'PASS'])


df['value'] = 1
result = df.pivot_table(values='value', index='ID', columns='PASS', aggfunc='sum', fill_value=0)
result['Total'] = result.agg(sum, axis=1)
result
PASS    FALSE   TRUE    Total
ID          
a   1   2   3
b   1   3   4
c   0   2   2

Upvotes: 2

Related Questions