Reputation: 656
I am using TF 2.0.
WORKING:
from tensorflow.keras import layers
inputs = layers.Input(shape=(256,), sparse=False, name='name_sparse')
x = layers.Dense(32, name="my_layer")(inputs)
print(x)
Output: Tensor("my_layer/Identity:0", shape=(None, 32), dtype=float32)
NOT WORKING:
If I change sparse to True
in the above code, the output changes to:
ValueError: The last dimension of the inputs to Dense should be defined. Found None.
How can I pass a sparse tensor to the Dense layer in TF2.0. It works well in TF1.14.
Upvotes: 2
Views: 2205
Reputation: 2642
This happens because when input tensor is sparse shape of this tensor evaluates to (None,None)
instead of (256,)
inputs = layers.Input(shape=(256,), sparse=True, name='name_sparse')
print(inputs.shape)
# output: (?, ?)
This also seems to be an open issue.
One solution is to write custom layer sub-classing Layer class (Refer this).
As a work-around (tested on tf-gpu 2.0.0) adding batch-size in input layer works fine:
from tensorflow.keras import layers
inputs = layers.Input(shape=(256,), sparse=True, name='name_sparse', batch_size=32)
print(inputs.shape) # (32, 256)
x = layers.Dense(32, name="my_layer")(inputs)
print(x) # Tensor("my_layer_10/BiasAdd:0", shape=(32, 32), dtype=float32)
Upvotes: 3