Reputation: 2740
I have a daily time series [1980 - present] where I need to check each daily timestep for zeros and systematically drop records. I would ultimately like to vectorize this solution, so I can pre-process these operations before proceeding with my analysis. If I have the dataframe df
:
date name elev_exact swe
0 1990-10-30 COTTONWOOD_CREEK 2337.816 0.01524
1 1990-10-30 EMIGRANT_SUMMIT 2252.472 0.00000
2 1990-10-30 PHILLIPS_BENCH 2499.360 0.05334
3 1990-10-30 PINE_CREEK_PASS 2048.256 0.00000
4 1990-10-30 SALT_RIVER_SUMMIT 2328.672 0.00000
5 1990-10-30 SEDGWICK_PEAK 2392.680 0.00000
6 1990-10-30 SHEEP_MTN 2026.920 0.00000
7 1990-10-30 SLUG_CREEK_DIVIDE 2202.180 0.00000
8 1990-10-30 SOMSEN_RANCH 2072.640 0.00000
9 1990-10-30 WILDHORSE_DIVIDE 1978.152 0.00000
10 1990-10-30 WILLOW_CREEK 2462.784 0.01778
11 1991-03-15 COTTONWOOD_CREEK 2337.816 0.41910
12 1991-03-15 EMIGRANT_SUMMIT 2252.472 0.42418
13 1991-03-15 PHILLIPS_BENCH 2499.360 0.52832
14 1991-03-15 PINE_CREEK_PASS 2048.256 0.32258
15 1991-03-15 SALT_RIVER_SUMMIT 2328.672 0.23876
16 1991-03-15 SEDGWICK_PEAK 2392.680 0.39878
17 1991-03-15 SHEEP_MTN 2026.920 0.31242
18 1991-03-15 SLUG_CREEK_DIVIDE 2202.180 0.29464
19 1991-03-15 SOMSEN_RANCH 2072.640 0.29972
20 1991-03-15 WILDHORSE_DIVIDE 1978.152 0.35052
21 1991-03-15 WILLOW_CREEK 2462.784 0.60706
22 1991-10-25 COTTONWOOD_CREEK 2337.816 0.01270
23 1991-10-25 EMIGRANT_SUMMIT 2252.472 0.01016
24 1991-10-25 PHILLIPS_BENCH 2499.360 0.02286
25 1991-10-25 PINE_CREEK_PASS 2048.256 0.00508
26 1991-10-25 SALT_RIVER_SUMMIT 2328.672 0.01016
27 1991-10-25 SEDGWICK_PEAK 2392.680 0.00254
28 1991-10-25 SHEEP_MTN 2026.920 0.00000
29 1991-10-25 SLUG_CREEK_DIVIDE 2202.180 0.00762
30 1991-10-25 SOMSEN_RANCH 2072.640 0.00000
31 1991-10-25 WILDHORSE_DIVIDE 1978.152 0.00508
32 1991-10-25 WILLOW_CREEK 2462.784 0.02032
The problem is I want to find days where more than one zero swe
measurement, and only keep the observation with the largest elev_exact
. I then need to merge the desired zero record back into df
.
Here is a groupby loop that would achieve what I want:
result = pd.DataFrame()
for name, group in df.groupby('date'):
non_zero = group.where(group.swe >0).dropna()
if not group.equals(non_zero):
zeros = group.where(group.swe == 0).dropna()
zero_kept = zeros.loc[zeros.elev_exact.idxmax()]
out = non_zero.append(zero_kept)
out = out[out.elev_exact >= zero_kept.elev_exact]
result = pd.concat([result, out])
else:
result = pd.concat([result, non_zero])
I dont mind using groupby
but I would like to use it a little more methodically so I don't have the inner if-else
loop.
Here is how I am thinking about the problem
zero_count = df.groupby('date').apply(lambda x: np.count_nonzero(x==0))
zero_count = zero_count.where(zero_count >1).dropna()
zero_count > 1
zero_fix = zero_count.where(zero_count >1).dropna()
fixes = df[df.date.isin(zero_fix.index)].dropna()
fixes = fixes.loc[fixes[fixes.swe==0].groupby('date')['elev_exact'].idxmax().to_list()]
df
. df.loc[:,'threshold'] = df.date.map(lu_dict)
df = df.replace(np.nan, 0)
df = df[df.elev_exact >= df.threshold].drop('threshold', axis=1)
This also works, but the lambda function is step 1 is pretty slow. Is there another way to count zeros?
Expected output:
date name elev_exact swe
2 1990-10-30 PHILLIPS_BENCH 2499.360 0.05334
5 1990-10-30 SEDGWICK_PEAK 2392.680 0.00000
10 1990-10-30 WILLOW_CREEK 2462.784 0.01778
11 1991-03-15 COTTONWOOD_CREEK 2337.816 0.41910
12 1991-03-15 EMIGRANT_SUMMIT 2252.472 0.42418
13 1991-03-15 PHILLIPS_BENCH 2499.360 0.52832
14 1991-03-15 PINE_CREEK_PASS 2048.256 0.32258
15 1991-03-15 SALT_RIVER_SUMMIT 2328.672 0.23876
16 1991-03-15 SEDGWICK_PEAK 2392.680 0.39878
17 1991-03-15 SHEEP_MTN 2026.920 0.31242
18 1991-03-15 SLUG_CREEK_DIVIDE 2202.180 0.29464
19 1991-03-15 SOMSEN_RANCH 2072.640 0.29972
20 1991-03-15 WILDHORSE_DIVIDE 1978.152 0.35052
21 1991-03-15 WILLOW_CREEK 2462.784 0.60706
22 1991-10-25 COTTONWOOD_CREEK 2337.816 0.01270
23 1991-10-25 EMIGRANT_SUMMIT 2252.472 0.01016
24 1991-10-25 PHILLIPS_BENCH 2499.360 0.02286
26 1991-10-25 SALT_RIVER_SUMMIT 2328.672 0.01016
27 1991-10-25 SEDGWICK_PEAK 2392.680 0.00254
29 1991-10-25 SLUG_CREEK_DIVIDE 2202.180 0.00762
30 1991-10-25 SOMSEN_RANCH 2072.640 0.00000
32 1991-10-25 WILLOW_CREEK 2462.784 0.02032
Upvotes: 3
Views: 440
Reputation: 153460
You can try this, split the dataframe into non-zeroes and zeroes, then sort zeroes dataframe by highest elev_exact and use drop_duplicates
with subset on date column. Lastly, use pd.concat
to join dataframe back together and sort:
df_nonzeroes = df[df['swe'].ne(0)]
df_zeroes = df[df['swe'].eq(0)].sort_values('elev_exact', ascending=False).drop_duplicates(subset=['date'])
df_out = pd.concat([df_nonzeroes, df_zeroes]).sort_index()
print(df_out)
Output:
date name elev_exact swe
0 1990-10-30 COTTONWOOD_CREEK 2337.816 0.01524
2 1990-10-30 PHILLIPS_BENCH 2499.360 0.05334
5 1990-10-30 SEDGWICK_PEAK 2392.680 0.00000
10 1990-10-30 WILLOW_CREEK 2462.784 0.01778
11 1991-03-15 COTTONWOOD_CREEK 2337.816 0.41910
12 1991-03-15 EMIGRANT_SUMMIT 2252.472 0.42418
13 1991-03-15 PHILLIPS_BENCH 2499.360 0.52832
14 1991-03-15 PINE_CREEK_PASS 2048.256 0.32258
15 1991-03-15 SALT_RIVER_SUMMIT 2328.672 0.23876
16 1991-03-15 SEDGWICK_PEAK 2392.680 0.39878
17 1991-03-15 SHEEP_MTN 2026.920 0.31242
18 1991-03-15 SLUG_CREEK_DIVIDE 2202.180 0.29464
19 1991-03-15 SOMSEN_RANCH 2072.640 0.29972
20 1991-03-15 WILDHORSE_DIVIDE 1978.152 0.35052
21 1991-03-15 WILLOW_CREEK 2462.784 0.60706
22 1991-10-25 COTTONWOOD_CREEK 2337.816 0.01270
23 1991-10-25 EMIGRANT_SUMMIT 2252.472 0.01016
24 1991-10-25 PHILLIPS_BENCH 2499.360 0.02286
25 1991-10-25 PINE_CREEK_PASS 2048.256 0.00508
26 1991-10-25 SALT_RIVER_SUMMIT 2328.672 0.01016
27 1991-10-25 SEDGWICK_PEAK 2392.680 0.00254
29 1991-10-25 SLUG_CREEK_DIVIDE 2202.180 0.00762
30 1991-10-25 SOMSEN_RANCH 2072.640 0.00000
31 1991-10-25 WILDHORSE_DIVIDE 1978.152 0.00508
32 1991-10-25 WILLOW_CREEK 2462.784 0.02032
Upvotes: 2