Reputation: 75
I have 2 dataframes of restaurant information to merge.
df1 = pd.DataFrame ({'Restaurant_Name': ['Apple', 'Banana', 'Orange', 'apple','apple1'],
'Postal Code': [12345, 12345, 54321, 54321,1111]})
df2 = pd.DataFrame ({'Restaurant_Name': ['apple', 'apple', 'Banana'],
'Postal Code': [12345, 54321, 12345],
'Phone':[100,200,300]})
Ideally I want to produce a table that looks like this:
I tried to match the restaurant names based on fuzzy matching followed by a match of postal code, but was not able to get a very accurate result. I also tried to concatenate the restaurant name with postal code for each of the dataframe and do a fuzzy matching of the concatenated result but I don't think this is the best way.
Is there any way to achieve 100% accuracy in matching the two dataframes?
Upvotes: 4
Views: 5212
Reputation: 2222
Check difflib.get_close_matches().
I tried this using your sample dataframe. Does it help?
import pandas as pd
import difflib
df1 = pd.DataFrame ({'Restaurant_Name': ['Apple', 'Banana', 'Orange', 'apple','apple1'],
'Postal Code': [12345, 12345, 54321, 54321,1111]})
df2 = pd.DataFrame ({'Restaurant_Name': ['apple', 'apple', 'Banana'],
'Postal Code': [12345, 54321, 12345],
'Phone':[100,200,300]})
df1['key'] = df1['Restaurant_Name']+df1['Postal Code'].astype(str)
df2['key'] = df2['Restaurant_Name']+df2['Postal Code'].astype(str)
df2['key'] = df2['key'].apply(lambda x: difflib.get_close_matches(x, df1['key'])[0])
df1.merge(df2, on='key', how='outer')[['Restaurant_Name_x','Restaurant_Name_y','Postal Code_x','Phone']]
Output:
Restaurant_Name_x Restaurant_Name_y Postal Code_x Phone
0 Apple apple 12345 100.0
1 Banana Banana 12345 300.0
2 Orange NaN 54321 NaN
3 apple apple 54321 200.0
4 apple1 NaN 1111 NaN
As you said, I did concatenate the restaurant name with postal code to get a unique combination.
Upvotes: 4
Reputation: 3097
One option is to use some Fuzzy String Matching module like fuzzywuzzy
.
install required librarys
pip install fuzzywuzzy
pip install python-Levenshtein
now find name matches like below
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
match_level = 90
def find_details(row):
sub_df = df2[df2['Postal Code'] == row['Postal Code']].copy()
sub_df['match'] = sub_df['Restaurant_Name'].apply(lambda x: fuzz.token_sort_ratio(row['Restaurant_Name'], x))
sub_df = sub_df[sub_df['match'] >= match_level].sort_values(['match'], ascending=[False])
phone = ''
if sub_df.shape[0] > 0:
phone = sub_df['Phone'].values[0]
ret = {
'phone' : phone
}
return pd.Series(ret)
df1.merge(df1.apply(lambda row: find_details(row), axis=1), left_index=True, right_index=True)
which gives you the following output
Restaurant_Name Postal Code phone
0 Apple 12345 100
1 Banana 12345 300
2 Orange 54321
3 apple 54321 200
4 apple1 1111
Upvotes: 0