Reputation: 1564
Reference I was following: https://www.tensorflow.org/api_docs/python/tf/keras/Model#save I really want to run the model; give it some inputs; grab some layer outputs coming from inside the model.
model = tf.keras.models.load_model('emb_movielens100k_all_cols_dec122019')
input_shape = (None, 10)
model.build(input_shape)
All good so far; no errors no warnings.
model.summary()
ValueError: You tried to call `count_params` on IL, but the layer isn't built. You can build it manually via: `IL.build(batch_input_shape)`
How to fix?
Following code does not fix it:
IL.build(input_shape) # no
model.layer-0.build(input_shape) # no
This seems to work: But it's a long way from my goal of running the model and grabbing some layer outputs. Isn't there an easy way in TF 2.0.0?
layer1 = model.get_layer(index=1)
This throws an error:
model = tf.saved_model.load('emb_movielens100k_all_cols_dec122019')
input_shape = (None, 10)
model.build(input_shape) #AttributeError: '_UserObject' object has no attribute 'build'
Upvotes: 1
Views: 794
Reputation: 1564
The fix was to use save_model(), not model.save(). Also needed to use save_format="h5" during save, not default format. Like this:
tf.keras.models.save_model(model, "h5_emb.hp5", save_format="h5")
Also needed to use model_load(), not saved_model.load(), to load to memory from disk. Like this:
model = tf.keras.models.load_model('h5_emb.hp5')
The other tutorial and documentation ways of doing save and load returned a model that did not work right for predictions or summary.
This is tensorflow version 2.0.0.
Hope this helps others.
Upvotes: 1