Reputation:
We are a given number n
1<=n<= 10^18, and we have to find minimal number that's greater than n
and also it's adjacent digits are different, for example for 1000, answer is 1010, for 99, answer is 101. The approach is simple if n<=10^9. But it takes a lot of time to calculate for higher values. How it can be implemented so that it calculates quickly for 10^18 also?. My approach is following, it works only for n<=10^9.
#include <iostream>
using namespace std;
bool valid(int x){
if(x==0)return 1;
if(x%10==(x/10)%10)return 0;
return valid(x/10);
}
unsigned long long n;
int main() {
cin>>n;
n++;
while(1){
if(valid(n)){
cout<<n;
return 0;
}
n++;
}
}
for example for 1000, answer is 1010, for 99, answer is 101.
Upvotes: 1
Views: 1100
Reputation: 41872
My approach is following, it works only for n<=10^9
This is probably due to this glaring type mismatch:
bool valid(int x) {
unsigned long long n;
if (valid(n)) {
You're throwing away half the bits of n
when you pass it to valid()
as it only operates on int
, not unsigned long long
. Here's a reimplementation of your logic which fixes that issue but only does two divisions on each iteration instead of four:
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
bool valid(unsigned long long x) {
unsigned long long remainder = x % 10;
while (x) {
unsigned long long quotient = x / 10;
unsigned long long adjacent = quotient % 10;
if (remainder == adjacent) {
return false;
}
x = quotient;
remainder = adjacent;
}
return true;
}
int main(int argc, char *argv[]) {
char *pointer;
unsigned long long n = strtoull(argv[1], &pointer, 10) + 1;
while (true) {
if (valid(n)) {
printf("%llu\n", n);
break;
}
n++;
}
return 0;
}
EXAMPLE
> dc
10 10 ^ p
10000000000
> ./a.out 10000000000
10101010101
> dc
10 11 ^ p
100000000000
> ./a.out 100000000000
101010101010
>
But unfortunately it's still way too slow to attack 10^18
Thanks, but this post was about slowness – Sandro Jologua
Let's approach this a completely different, and fast, way using logarithms and powers of 10. Not converting to a string but using math to solve the problem:
#include <stdio.h>
#include <stdlib.h>
unsigned logTen(unsigned long long number) {
unsigned power = 0;
while (number >= 10) {
power += 1;
number /= 10;
}
return power;
}
unsigned long long expTen(unsigned n) {
unsigned long long product = 1;
while (n > 0) {
product *= 10;
n -= 1;
}
return(product);
}
unsigned long long next_no_adjacent(unsigned long long number) {
number += 1;
unsigned power = logTen(number);
while (power > 0) {
unsigned long long multiplier = expTen(power);
unsigned long long digit = (number / multiplier) % 10;
unsigned long long adjacent_multiplier = expTen(power - 1);
unsigned long long adjacent_digit = (number / adjacent_multiplier) % 10;
while (digit == adjacent_digit) {
number = ((number + adjacent_multiplier) / adjacent_multiplier) * adjacent_multiplier;
digit = (number / multiplier) % 10;
adjacent_digit = (number / adjacent_multiplier) % 10;
}
--power;
}
return number;
}
int main(int argc, char *argv[]) {
char *pointer;
unsigned long long n = strtoull(argv[1], &pointer, 10);
printf("%llu\n", next_no_adjacent(n));
return 0;
}
EXAMPLE
> dc
10 19 ^ p
10000000000000000000
> time ./a.out 10000000000000000000
10101010101010101010
0.001u 0.001s 0:00.00 0.0% 0+0k 0+0io 0pf+0w
>
We have to define our own base 10 power and logarithm functions as the ones provided in the C library operate on double
but we need to work with unsigned long long
.
Upvotes: 2
Reputation:
Solved it on my own
#include <bits/stdc++.h>
#define ll unsigned long long
using namespace std;
bool noDec(string str,int i,ll num){
str[i+1]--;
return stoll(str)>num;
}
ll num;
string str;
int main() {
cin>>num;
str=to_string(num+1);
for(int i=0; i<str.length()-1; i++){
if(str[i]==str[i+1]){
if(str[i]!='9'){
if(noDec(str,i,num)&&str[i]!='0')str[i+1]--;
else str[i+1]++;
}
else{
if(i==0){
str='1'+string(str.length(),'0');
}else{
str[i-1]++;
for(int j=i; j<str.length(); j++){
str[j]='0';
}
}
}i=0;
}
}
if(str[0]==str[1]&&str[0]=='9'){
str=string((ll)log10(num)+2,'1');
for(int i=1; i<str.length(); i+=2)
str[i]='0';
}
cout<<str;
}
Upvotes: 0
Reputation: 76
My solution is based on adjacent digits, with additional logic when we met "99". I don't like it really much, but maybe it will solve your problem or help to write better solution.
public static int Test(string nStr)
{
var n = int.Parse(nStr);
var needRestartCheck = true;
while (needRestartCheck)
{
needRestartCheck = false;
for (var i = 0; i < nStr.Length - 1; i++)
{
var first = nStr[i];
var second = nStr[i + 1];
if (first == second)
{
n += (int)Math.Pow(10, nStr.Length - 2 - i);
nStr = n.ToString();
needRestartCheck |= first == '9';
}
}
}
return n;
}
Upvotes: 0