Reputation: 6197
Say that I have a column of lists. If the list has at least one item in a set, I want to keep the row, otherwise I want to drop the row.
Here is a minimal example
#create the df
d={'range':list(range(0,3))}
df=pd.DataFrame(d)
l=[1, 2, 3]
m =[4, 5, 6]
n =[1, 7, 8]
df['var_list']=''
df['var_list'][0]=l
df['var_list'][1]=m
df['var_list'][2]=n
df.head(3)
result
range var_list
0 0 [1, 2, 3]
1 1 [4, 5, 6]
2 2 [1, 7, 8]
And this is the set I want to use
setS = {1, 2}
What I'm trying to do is, if any row's list has an item that's in the set, keep that row, otherwise drop that row.
So this is the desired result:
range var_list
0 0 [1, 2, 3]
2 2 [1, 7, 8]
What I tried
df2 = df[df['var_list'].isin(setS)]
This is the error I got
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
TypeError: unhashable type: 'list'
The above exception was the direct cause of the following exception:
SystemError Traceback (most recent call last)
<ipython-input-56-90ea3b42ebf3> in <module>()
----> 1 df2 = df[df['var_list'].isin(setS)]
2 frames
/usr/local/lib/python3.6/dist-packages/pandas/core/series.py in isin(self, values)
4512 Name: animal, dtype: bool
4513 """
-> 4514 result = algorithms.isin(self, values)
4515 return self._constructor(result, index=self.index).__finalize__(self)
4516
/usr/local/lib/python3.6/dist-packages/pandas/core/algorithms.py in isin(comps, values)
478 comps = comps.astype(object)
479
--> 480 return f(comps, values)
481
482
/usr/local/lib/python3.6/dist-packages/pandas/core/algorithms.py in <lambda>(x, y)
454
455 # faster for larger cases to use np.in1d
--> 456 f = lambda x, y: htable.ismember_object(x, values)
457
458 # GH16012
pandas/_libs/hashtable_func_helper.pxi in pandas._libs.hashtable.ismember_object()
SystemError: <built-in method view of numpy.ndarray object at 0x7fcc893844e0> returned a result with an error set
Upvotes: 4
Views: 580
Reputation: 25259
List comprehension with python set intersection to create the mask and slice
m = [len(setS & x) > 0 for x in df.var_list.map(set)]
df[m]
Out[21]:
range var_list
0 0 [1, 2, 3]
2 2 [1, 7, 8]
Upvotes: 1
Reputation: 7224
You can accomplish this with an apply map and or operator, by converting the list to a set and comparing:
[df.var_list.apply(lambda x: False if len(setS | set(x)) > 4 else True)]
Out[3343]:
range var_list
0 0 [1, 2, 3]
2 2 [1, 7, 8]
Upvotes: 0
Reputation: 22503
A column of lists is not how pandas
normally works. You have to check for the items in the list explicitly:
print (df[df["var_list"].transform(lambda x: bool(set(x)&sets))])
#
range var_list
0 0 [1, 2, 3]
2 2 [1, 7, 8]
Upvotes: 1