Reputation: 5809
I would like to iterate over the vertexes of a graph based on the maximum depth of the vertex from any of the root vertexes.
Fore example the maximal depth of the vertex I
is 3 (and is this annotated with this value in the graph below). Therefore any of the orderings would be acceptable: {A , B , C , D} , {E , F , G} , {H}, {I}
, where any of the vertexes in curly braces {}
can be ordered arbitrarily.
I have come across a somewhat similar question but it is geared towards getting the maximum depth of a single vertex and appears to assume a single root node.
I am quite new to boost graph but here is my feeble attempt at what a solution might resemble
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/depth_first_search.hpp>
using namespace boost;
class depth_visitor : public default_dfs_visitor
{
public:
template <typename Vertex , typename Graph >
void discover_vertex(Vertex v , const Graph & g) const
{
// update 'depth' of vertex
}
};
int main()
{
enum { A , B, C, D, E, F, G , H , I , COUNT };
const char* name[] = { "A" , "B" , "C" , "D" , "E" , "F" , "G" , "H" , "I" };
typedef std::pair <int, int >Edge;
Edge edge_array[] = { Edge(D, G), Edge(C, G), Edge(C, F), Edge(B, F), Edge(B, E), Edge(A, E),
Edge(G, H), Edge(F, I), Edge(E, H), Edge(H, I) };
typedef adjacency_list < vecS, vecS, directedS > graph_t;
graph_t g( edge_array , edge_array + sizeof(edge_array) / sizeof(E), COUNT );
depth_visitor vis;
depth_first_search( g , visitor( vis ) );
}
Upvotes: 2
Views: 234
Reputation: 392833
What Andy said: you can traverse the out-edges manually.
Alternatively you can use BFS with a custom visitor. You already had a similar idea.
Here's a realization of it:
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <iostream>
#include <map>
Now, let's define our types:
using Name = char;
using Graph = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS, Name>;
using Edge = Graph::edge_descriptor;
using Vertex = Graph::vertex_descriptor;
Let's create our own maximum distance recorder. This is roughly based on the distance_recorder<>
class from Boost, which is an EventVisitor.
In our case, we'll have it filter for the on_tree_edge
event only (because we don't care about non-tree graphs here).
using Depths = std::map<Vertex, size_t>;
struct Recorder : public boost::base_visitor<Recorder> {
using event_filter = boost::on_tree_edge;
Depths& _ref;
Recorder(Depths& r):_ref(r){}
void operator()(Edge e, const Graph& g) const {
auto s = source(e, g), t = target(e, g);
std::cout << "TREE EDGE " << g[s] << " -> " << g[t] << "\n";
auto srcit = _ref.find(s);
auto depth = srcit!=_ref.end()? srcit->second+1: 1;
if (auto [it, isnew] = _ref.emplace(t, depth); !isnew) {
it->second = std::max(it->second, depth);
}
}
};
You can see it basically just updates a std::map
but with the following special treatments:
operator[source_vertex]
which would insert entries with depth 0)With that out of the way, all we need is to invoke the algorithm:
std::vector roots { A, B, C, D };
Depths depths;
Recorder r{depths};
for (auto root : roots)
boost::breadth_first_search(
g, root,
queue, boost::make_bfs_visitor(r), color_map);
for (auto [v,d] : depths)
std::cout << g[v] << " at " << d << "\n";
Important Notes:
- use
breadth_first_search
as opposed tobreadth_first_visit
because otherwise thecolor_map
would not be re-initialized on each root node. This would make already-discovered nodes always be skipped, which means we would not correctly get the maximum distancethis is also the reason we couldn't use the multi-source overload like so:
// WARNING BROKEN! boost::breadth_first_search( g, begin(roots), end(roots), queue, boost::make_bfs_visitor(r), color_map);
the effect would be the same because there's no re-initialization of the color-map for each root node.
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <iostream>
#include <map>
using Name = char;
using Graph = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS, Name>;
using Edge = Graph::edge_descriptor;
using Vertex = Graph::vertex_descriptor;
using Depths = std::map<Vertex, size_t>;
struct Recorder : public boost::base_visitor<Recorder> {
using event_filter = boost::on_tree_edge;
Depths& _ref;
Recorder(Depths& r):_ref(r){}
void operator()(Edge e, const Graph& g) const {
auto s = source(e, g), t = target(e, g);
std::cout << "TREE EDGE " << g[s] << " -> " << g[t] << "\n";
auto srcit = _ref.find(s);
auto depth = srcit!=_ref.end()? srcit->second+1: 1;
if (auto [it, isnew] = _ref.emplace(t, depth); !isnew) {
it->second = std::max(it->second, depth);
}
}
};
int main() {
enum : Vertex { A, B, C, D, E, F, G, H, I, COUNT };
Graph g(COUNT);
// give names
for (auto v : boost::make_iterator_range(vertices(g)))
g[v] = 'A' + v;
// add edges
for (auto [s,t] : {
std::pair(D,G), {D, G}, {C, G}, {C, F}, {B, F}, {B, E}, {A, E},
{G, H}, {F, I}, {E, H},
{H, I} })
{
add_edge(s, t, g);
}
std::vector roots { A, B, C, D };
boost::queue<Vertex> queue;
std::vector<boost::default_color_type> colors(num_vertices(g));
auto color_map = boost::make_iterator_property_map(begin(colors), get(boost::vertex_index, g));
Depths depths;
Recorder r{depths};
for (auto root : roots)
boost::breadth_first_search(
g, root,
queue, boost::make_bfs_visitor(r), color_map);
for (auto [v,d] : depths)
std::cout << g[v] << " at " << d << "\n";
}
Which prints
TREE EDGE A -> E
TREE EDGE E -> H
TREE EDGE H -> I
TREE EDGE B -> F
TREE EDGE B -> E
TREE EDGE F -> I
TREE EDGE E -> H
TREE EDGE C -> G
TREE EDGE C -> F
TREE EDGE G -> H
TREE EDGE F -> I
TREE EDGE D -> G
TREE EDGE G -> H
TREE EDGE H -> I
E at 1
F at 1
G at 1
H at 2
I at 3
Slightly altered to detect roots "by brute force":
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <iostream>
#include <map>
using boost::make_iterator_range;
using Name = char;
using Graph = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS, Name>;
using Edge = Graph::edge_descriptor;
using Vertex = Graph::vertex_descriptor;
using Depths = std::map<Vertex, size_t>;
struct Recorder : public boost::base_visitor<Recorder> {
using event_filter = boost::on_tree_edge;
Depths& _ref;
Recorder(Depths& r):_ref(r){}
void operator()(Edge e, const Graph& g) const {
auto depth = 1 + _ref[source(e, g)];
if (auto [it, isnew] = _ref.emplace(target(e, g), depth); !isnew) {
it->second = std::max(it->second, depth);
}
}
};
int main() {
enum : Vertex { A, B, C, D, E, F, G, H, I, COUNT };
Graph g(COUNT);
// give names
for (auto v : make_iterator_range(vertices(g)))
g[v] = 'A' + v;
// add edges
for (auto [s,t] : {
std::pair(D,G), {D, G}, {C, G}, {C, F}, {B, F}, {B, E}, {A, E},
{G, H}, {F, I}, {E, H},
{H, I} })
{
add_edge(s, t, g);
}
boost::queue<Vertex> queue;
std::vector<boost::default_color_type> colors(num_vertices(g));
auto color_map = boost::make_iterator_property_map(begin(colors), get(boost::vertex_index, g));
Depths depths;
Recorder r{depths};
for (auto v : make_iterator_range(vertices(g))) {
boost::breadth_first_search(g, v, queue, boost::make_bfs_visitor(r), color_map);
}
std::map<size_t, std::set<Vertex> > by_depth;
for (auto [v,d] : depths)
by_depth[d].insert(v);
for (auto& [d,vs] : by_depth) {
std::cout << "depth:" << d;
for (auto v : vs) std::cout << " " << g[v];
std::cout << "\n";
}
}
Prints
depth:0 A B C D
depth:1 E F G
depth:2 H
depth:3 I
Upvotes: 2