Reputation:
Need to check the 'detected'
key of bool3_res
with key is_doc1
of bool_res
and bool_2
res
if bool3_res['detected'] == bool1_res['is_doc1'] == True
then my resp
has to return
if bool3_res['detected'] == bool2_res['is_doc1'] == True
then my resp
has to return\
3: else return 'Not valid'
Data frame
user_uid,bool1,bool2,bool3,bool1_res,bool2_res,bool3_res
1001,27452.webp,981.webp,d92e.webp,"{'is_doc1': False, 'is_doc2': True}","{'is_doc1': True, 'is_doc2': True}","{'detected': True, 'count': 1}"
1002,27452.webp,981.webp,d92e.webp,"{'is_doc1': True, 'is_doc2': True}","{'is_doc1': False, 'is_doc2': True}","{'detected': True, 'count': 1}"
My code
def new_func(x):
d1 = df['bool1_res'].to_dict()
d1 = eval(d1[0])
d2 = df['bool2_res'].to_dict()
d2 = eval(d2[0])
d3 = df['bool3_res'].to_dict()
d3 = eval(d3[0])
if d1['is_doc1'] == d3['detected'] == True:
resp = {
"task_id": "uid",
"group_id": "uid",
"data": {
"document1": df['bool1'],
"document2": df['bool3']
}
}
elif d2['is_doc1'] == d3['detected'] == True:
resp = {
"task_id": "user_uid",
"group_id": "uid",
"data": {
"document1": df['bool2'],
"document2": df['bool3']
}
}
elif d3['detected'] == False:
resp = 'Not valid'
else:
resp = 'Not valid'
return resp
df['new'] = df.apply(new_func, axis = 1)
#df['new'] = df[['bool1', 'bool2', 'bool3', 'bool1_res', 'bool2_res', 'bool3_res']].applymap(new_func)
My expected out
df['new']
{'u_id': 'uid', 'group': 'uid', 'data': {'document1': ['981.webp'], 'document2': {'d92e.webp'}}}"
{'u_id': 'uid', 'group': 'uid', 'data': {'document1': ['27452.webp'], 'document2': {'d92e.webp'}}}"
My Out df['new']
0 {'task_id': 'user_uid', 'group_id': 'uid', 'data': {'document1': ['981.webp', '981.webp'], 'document2': ['d92e.webp', 'd92e.webp']}}
1 {'task_id': 'user_uid', 'group_id': 'uid', 'data': {'document1': ['981.webp', '981.webp'], 'document2': ['d92e.webp', 'd92e.webp']}}
Name: new, dtype: object
Upvotes: 2
Views: 219
Reputation: 91
I'm assuming this is what your data looks like after expanding your code lines: (Also, it's a lot easier to read if you can even just add some whitespace...^_^)
df = pd.DataFrame(
[
[1001, "27452.webp", "981.webp", "d92e.webp",
"{'is_doc1': False, 'is_doc2': True}",
"{'is_doc1': True, 'is_doc2': True}",
"{'detected': True, 'count': 1}"
],
[1002, "27452.webp", "981.webp", "d92e.webp",
"{'is_doc1': True, 'is_doc2': True}",
"{'is_doc1': False, 'is_doc2': True}",
"{'detected': True, 'count': 1}"
],
[1003, "27452.webp", "981.webp", "d92e.webp",
"{'is_doc1': True, 'is_doc2': True}",
"{'is_doc1': False, 'is_doc2': True}",
"{'detected': False, 'count': 1}"
],
],
columns=['user_uid', 'bool1', 'bool2', 'bool3', 'bool1_res', 'bool2_res',
'bool3_res'
]
)
The execution is split into two parts: (1) parsing the strings and (2) processing/making your "new" column values.
# required packages
import ast
import pandas as pd
# for type suggestions
from typing import Any
This function is applied to each element in your dataframe via pd.DataFrame.applymap and uses ast.literal_eval
, as @jezrael rightly suggested.
def str2dict(x: Any):
"""(Step 1) Parses argument using ast.literal_eval"""
try:
x = ast.literal_eval(x.strip())
# if x is not parsable, return x as-is
except ValueError as e:
pass
finally:
return x
This function is applied to each row of your dataframe (by pd.DataFrame.agg):
Based on the logic in your posted function, I:
check if bool3['detected']
is False (your first two conditions both have detected == True); if so, raise ValueError
check if is_doc1 is True for bool1, and if not, for bool2
if neither is_doc1 is True, raise ValueError
def make_newcol_entry(x: pd.Series):
"""(Step 2) constructs "new" column value for pandas group"""
try:
if x.bool3_res['detected'] is False:
raise ValueError
# check is_doc1 properties
elif x.bool1_res['is_doc1'] is True:
document1 = x.bool1
elif x.bool2_res['is_doc1'] is True:
document1 = x.bool2
else:
raise ValueError
except ValueError:
entry = "not valid"
pass
# if there is `is_doc1` that is True, construct your entry.
else:
entry = {
"task_id": "uid",
"group_id": "uid",
"data": {"document1": document1, "document2": x.bool3}
}
return entry
df = df.assign(new=lambda x: x.applymap(str2dict) \
.agg(make_newcol_entry, axis=1))
Note that this parses all elements in your dataframe.
To parse only the bool_res
columns, you can perform it in two steps:
# select and parse only res cols ('bool#_res'), then apply
df.update(df.filter(regex=r'_res$', axis=1).applymap(str2dict))
df = df.assign(lambda x: x.agg(apply_make_newcol_entry, axis=1))
$ df
user_uid bool1 bool2 bool3 bool1_res bool2_res bool3_res new
0 1001 27452.webp 981.webp d92e.webp {'is_doc1': False, 'is_doc2': True} {'is_doc1': True, 'is_doc2': True} {'detected': True, 'count': 1} {'task_id': 'uid', 'group_id': 'uid', 'data': {'document1': '981.webp', 'document2': 'd92e.webp'}}
1 1002 27452.webp 981.webp d92e.webp {'is_doc1': True, 'is_doc2': True} {'is_doc1': False, 'is_doc2': True} {'detected': True, 'count': 1} {'task_id': 'uid', 'group_id': 'uid', 'data': {'document1': '27452.webp', 'document2': 'd92e.webp'}}
2 1003 27452.webp 981.webp d92e.webp {'is_doc1': True, 'is_doc2': True} {'is_doc1': False, 'is_doc2': True} {'detected': False, 'count': 1} not valid
$ df['new']
0 {'task_id': 'uid', 'group_id': 'uid', 'data': {'document1': '981.webp', 'document2': 'd92e.webp'}}
1 {'task_id': 'uid', 'group_id': 'uid', 'data': {'document1': '27452.webp', 'document2': 'd92e.webp'}}
2 not valid
Name: new, dtype: object
Upvotes: 2
Reputation: 862641
You should avoid eval
and instead use ast.literal_eval
with x
instead df
for processing per rows and for one element lists add []
to x['bool1']
, x['bool2']
and x['bool3']
:
import ast
def new_func(x):
d1 = ast.literal_eval(x['bool1_res'])
d2 = ast.literal_eval(x['bool2_res'])
d3 = ast.literal_eval(x['bool3_res'])
if d1['is_doc1'] == d3['detected'] == True:
resp = {
"task_id": "uid",
"group_id": "uid",
"data": {
"document1": [x['bool1']],
"document2": [x['bool3']]
}
}
elif d2['is_doc1'] == d3['detected'] == True:
resp = {
"task_id": "user_uid",
"group_id": "uid",
"data": {
"document1": [x['bool2']],
"document2": [x['bool3']]
}
}
elif d3['detected'] == False:
resp = 'Not valid'
else:
resp = 'Not valid'
return resp
df['new'] = df.apply(new_func, axis = 1)
print (df['new'].iat[0])
{'task_id': 'user_uid', 'group_id': 'uid', 'data': {'document1': ['981.webp'], 'document2': ['d92e.webp']}}
print (df['new'].iat[1])
{'task_id': 'uid', 'group_id': 'uid', 'data': {'document1': ['27452.webp'], 'document2': ['d92e.webp']}}
Upvotes: 2