Reputation: 45
I'm new to pytorch and I want to understand how can I set the initial weight for the first hidden layer of my network. I explain a little better: my network is a very simple one layer MLP with 784 inputs values and 10 output values
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
# Dropout module with 0.2 drop probability
self.dropout = nn.Dropout(p=0.2)
def forward(self, x):
# make sure input tensor is flattened
# x = x.view(x.shape[0], -1)
# Now with dropout
x = self.dropout(F.relu(self.fc1(x)))
# output so no dropout here
x = F.log_softmax(self.fc2(x), dim=1)
return x
and I have, for now, a numpy matrix of shape(128, 784) witch contain the values that I want for the weight in fc1. How can I initialise the weights of the first layer with the value contained in the matrix?
Searching online in other answers I find out that I have to define the init function for the weight, e.g.
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
but i can not understand the code
Upvotes: 3
Views: 4807
Reputation: 7693
You can use simply torch.nn.Parameter()
to assign a custom weight for the layer of your network.
As in your case -
model.fc1.weight = torch.nn.Parameter(custom_weight)
torch.nn.Parameter: A kind of Tensor that is to be considered a module parameter.
For Example:
# Classifier model
model = Classifier()
# your custom weight, here taking randam
custom_weight = torch.rand(model.fc1.weight.shape)
custom_weight.shape
torch.Size([128, 784])
# before assign custom weight
print(model.fc1.weight)
Parameter containing:
tensor([[ 1.6920e-02, 4.6515e-03, -1.0214e-02, ..., -7.6517e-03,
2.3892e-02, -8.8965e-03],
...,
[-2.3137e-02, 5.8483e-03, 4.4392e-03, ..., -1.6159e-02,
7.9369e-03, -7.7326e-03]])
# assign custom weight to first layer
model.fc1.weight = torch.nn.Parameter(custom_weight)
# after assign custom weight
model.fc1.weight
Parameter containing:
tensor([[ 0.1724, 0.7513, 0.8454, ..., 0.8780, 0.5330, 0.5847],
[ 0.8500, 0.7687, 0.3371, ..., 0.7464, 0.1503, 0.7720],
[ 0.8514, 0.6530, 0.6261, ..., 0.7867, 0.9312, 0.3890],
...,
[ 0.5426, 0.7655, 0.1191, ..., 0.4343, 0.2500, 0.6207],
[ 0.2310, 0.4260, 0.4138, ..., 0.1168, 0.5946, 0.2505],
[ 0.4220, 0.5500, 0.6282, ..., 0.5921, 0.7953, 0.9997]])
Upvotes: 5