Reputation: 358
So, I have a numpy array and I want to count frequencies of elements getting in specific intervals. For example,
array = np.array([0, 1, 1, 1, 2, 3, 4, 5])
intervals = np.array([0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5.])
result = {0.5: 0.125, 1.5: 0.375, 2.5: 0.125, 3.5: 0.125, 4.5: 0.125}
I have code that works fine, but it looks messy for me
import numpy as np
from collections import Counter
def freqs(arr):
#defining our intervals
intervals = np.arange(round(np.min(arr)), round(np.max(arr))+0.5, 0.5)
frequency = list()
#going through every number in array, if smaller then interval's value, appending interval's value
for arr_i in arr:
for intr_j in intervals:
if arr_i < intr_j:
frequency.append(intr_j)
break
#counting intervals' values
dic = dict(Counter(frequency))
#divide dic's values by lenghth of an array
freqs = dict(zip(list(dic.keys()), (np.array(list(dic.values())))/len(arr)))
return freqs
The part I dont like is where we're dividing dictionary's values by length of an array and with use of a lot of constructions we declare the new dictionary. But everything we did is just divide values by certain number.
Upvotes: 2
Views: 379
Reputation: 17824
You can use:
arr = np.logical_and(intervals[:-1:2] <= array[:,None],
array[:,None] < intervals[1::2])
dict(zip(intervals[1::2], arr.sum(axis=0) / len(array)))
Output:
{0.5: 0.125, 1.5: 0.375, 2.5: 0.125, 3.5: 0.125, 4.5: 0.125}
Upvotes: 1
Reputation: 5757
Improving upon the answer from @YOLO
>>> c, b = np.histogram(array, bins=intervals)
>>> {i:j for i,j in zip(b[1::2], c[0::2]/len(array))}
{0.5: 0.125, 1.5: 0.375, 2.5: 0.125, 3.5: 0.125, 4.5: 0.125}
Upvotes: 1
Reputation: 21719
I could get the same result as your using np.histogram
function.
result, _ = np.histogram(array, bins=intervals)
result = result / len(array)
filter_result = result[np.where(result > 0)]
print(filter_result)
[0.125 0.375 0.125 0.125 0.125 0.125]
Hope this gives you some idea.
Upvotes: 2