Reputation: 13
how can i replace the values in a column in a decremental order with maximum value of the second column is retained and other values are decremented by one from this value for a particular group in pandas?
I have a dataframe with 2 columns A and B
Input :
A B
210 2
210 1
210 5
210 3
145 1
145 3
145 3
145 6
desired output:
A B
210 2
210 3
210 4
210 5
145 3
145 4
145 5
145 6
Upvotes: 1
Views: 119
Reputation: 30930
Use groupby.cumcount
and then you can add the difference between the maximum and the group size using groupby.transform
:
groups = df.groupby('A').B
df['B']=( groups.cumcount()
.add(1)
.add(groups.transform('max')
.sub(groups.transform('size')) )
)
print(df)
Output
A B
0 210 2
1 210 3
2 210 4
3 210 5
4 145 3
5 145 4
6 145 5
7 145 6
Time comparision
%%timeit
groups = df.groupby('A').B
df['B']=( groups.cumcount()
.add(1)
.add(groups.transform('max')
.sub(groups.transform('size')))
)
#3.33 ms ± 66 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
def custom_f(grp):
m = grp.max()
return np.arange(m - grp.shape[0]+1 , m+1)
df['B'] = df[['A','B']].groupby('A').transform(custom_f)
#9.18 ms ± 890 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Upvotes: 1
Reputation: 11333
You can do the following. Basically, we are creating a range for each group and the range goes from max - num_rows + 1
to m
.
def custom_f(grp):
m = grp.max()
return np.arange(m - grp.shape[0]+1 , m+1)
df['B'] = df[['A','B']].groupby('A').transform(custom_f)
Upvotes: 0