Reputation: 15
I am trying to convert the data type of a list into float. I know how to convert the data type of each list using for-loop, however, I really don't know how to convert the data type of each item of a list, i.e., I have an array with the data type string such that
array(['5, 0, -150, 0', '6, 0, -10, 0',
'7, 2.5881904510252, 9.6592582628907, 0',
'8, 5, 8.6602540378444, 0',
'9, 7.0710678118655, 7.0710678118655, 0',
'10, 8.6602540378444, 5, 0'], dtype='<U63')
then, how can I build two dimensional array as 6x4 array of float data type?
Upvotes: 0
Views: 413
Reputation: 231665
In [72]: arr = np.array(['5, 0, -150, 0', '6, 0, -10, 0',
...: '7, 2.5881904510252, 9.6592582628907, 0',
...: '8, 5, 8.6602540378444, 0',
...: '9, 7.0710678118655, 7.0710678118655, 0',
...: '10, 8.6602540378444, 5, 0'], dtype='<U63')
The list comprehension that the others propose is the right way, but it can be simplified:
In [73]: [line.split(',') for line in arr]
Out[73]:
[['5', ' 0', ' -150', ' 0'],
['6', ' 0', ' -10', ' 0'],
['7', ' 2.5881904510252', ' 9.6592582628907', ' 0'],
['8', ' 5', ' 8.6602540378444', ' 0'],
['9', ' 7.0710678118655', ' 7.0710678118655', ' 0'],
['10', ' 8.6602540378444', ' 5', ' 0']]
np.array
can take care of handling the nested lists, and conversion to float:
In [74]: np.array(_, dtype=float)
Out[74]:
array([[ 5. , 0. , -150. , 0. ],
[ 6. , 0. , -10. , 0. ],
[ 7. , 2.58819045, 9.65925826, 0. ],
[ 8. , 5. , 8.66025404, 0. ],
[ 9. , 7.07106781, 7.07106781, 0. ],
[ 10. , 8.66025404, 5. , 0. ]])
The fact that the original object is an array rather than a list doesn't enhance this conversion. In fact iterating on the array is slower than iterating on the equivalent list.
Upvotes: 0
Reputation: 3988
Iterate on that array, split those strings on delimiter, then make them of float datatype.
>>> arr2 = np.array([np.array([float(i.strip()) for i in j.split(',') if i]) for j in arr1])
>>> arr2
array([[ 5. , 0. , -150. , 0. ],
[ 6. , 0. , -10. , 0. ],
[ 7. , 2.58819045, 9.65925826, 0. ],
[ 8. , 5. , 8.66025404, 0. ],
[ 9. , 7.07106781, 7.07106781, 0. ],
[ 10. , 8.66025404, 5. , 0. ]])
>>> arr2.dtype
dtype('float64')
Upvotes: 3