Reputation: 2513
I need to recode values over multiple columns of a data frame based on another table.
I have to recode the values of multiple columns of a data table using a side table. The values correspond to geographic identifiers that I must replace with place names. So I decided to do a loop but what works outside the loop doesn't work anymore . I can't use mutate in for loop.
My real data contains 274 columns with 38 columns to recode. This columns have many different names (they aren't call places")
my main dataset :
id <- c(1, 2, 3)
departure <- c(1, 2, NA)
arrival <- c(3, 1, 2)
transit <- c(NA,NA,1)
dataset <- data.frame(id, departure, arrival, transit)
The other table :
geo_id <- c(1, 2, 3)
place_name <- c("Paris", "Nantes", "London")
geocode <- data.frame(geo_id, place_name)
My loop :
var <- c("departure", "arrival", "transit") #the columns that should by recode (must be a vector with my real data)
for (i in var) {
print(i)
dataset <- dataset %>%
mutate(i = geocode$place_name[match(i, geocode$geo_id)])
}
mutate create a new column call i
! How to avoid this ?
Upvotes: 2
Views: 425
Reputation: 39858
With dplyr
, you can do:
dataset %>%
mutate_at(vars(one_of(var)), ~ geocode$place_name[match(., geocode$geo_id)])
id place1 place2 place3
1 1 Paris London <NA>
2 2 Nantes Paris <NA>
3 3 <NA> Nantes Paris
Or with the addition of tidyr
:
dataset %>%
pivot_longer(one_of(var)) %>%
left_join(geocode, by = c("value" = "geo_id")) %>%
select(-value) %>%
pivot_wider(names_from = name, values_from = place_name)
Upvotes: 4
Reputation: 76432
Maybe there are simpler ways but the code below works and if the var
vector of variables to change is preprocessed as one regex pattern, this code seems to be general, not depending on the number or names of the columns.
Part of it is inspired in this answer to another question. The auxiliary function f
is taken from there.
library(dplyr)
library(tidyr)
var_pattern <- paste(var, collapse = "|")
f <- function(.) if(length(unique(.[!is.na(.)])) > 1L) . else first(.[!is.na(.)])
dataset %>%
gather(place, value, -id) %>%
mutate(place_name = geocode$place_name[value]) %>%
spread(place, place_name) %>%
select(-value) %>%
group_by(id) %>%
mutate_at(vars(matches(var_pattern)), f) %>%
ungroup() %>%
distinct() %>%
filter(rowSums(is.na(.)) < 2L)
## A tibble: 3 x 4
# id place1 place2 place3
# <dbl> <fct> <fct> <fct>
#1 1 Paris London NA
#2 2 Nantes Paris NA
#3 3 NA Nantes Paris
Upvotes: 0
Reputation: 21719
Here's one way to do:
# select cols to recode
cols <- c('place1','place2')
# get other columns
other_cols <- setdiff(colnames(dataset), cols)
# recode df
recode_df = sapply(cols, function(x) place_name[dataset[[x]]])
# get all columns together
df = cbind(recode_df, dataset[other_cols])
Upvotes: 0
Reputation: 1179
I think you want to join the datasets. You can use this dplyr
function and drop any unneeded columns.
comb <- dplyr::left_join(dataset, geocode, by = (c("id" = "geo_id")))
comb
id place1 place2 place3 place_name
1 1 1 3 NA Paris
2 2 2 1 NA Nantes
3 3 NA 2 1 London
Upvotes: 1