Reputation: 190
I have a dataframe with a column with individuals' names:
name
Mr. Salmon
Mr Salmon
Ms. Salmon
Mrs. Salmon
Mrs Salmon
...
I would like to remove all the honorifics. I compiled the following regex at regex101.com and confirmed all the matches.
(^[Mm]([Rr]|[Ss]|[Xx]|[Rr][Ss]|[Ii][Ss]+)\.?\s)|(^[Mm][Ii][Ss][Tt][Ee][Rr]\.?\s)|(^[Mm][Ii][Ss]+[Uu][Ss]\.?\s)
I am using the replace method on the names dataframe to remove the regex matches with nothing. I am using the following code:
names_nohf = names.replace(r'(^[Mm]([Rr]|[Ss]|[Xx]|[Rr][Ss]|[Ii][Ss]+)\.?\s)|(^[Mm][Ii][Ss][Tt][Ee][Rr]\.?\s)|(^[Mm][Ii][Ss]+[Uu][Ss]\.?\s)', regex = True)
This, however, is not returning the desired names and is in fact making no changes at all. Could someone please point me to the right direction?
Upvotes: 1
Views: 1377
Reputation: 142814
Use empty string as new value
import pandas as pd
data = {'X': ['Mr A', 'Mr B', 'Mr C']}
df = pd.DataFrame(data)
print(df)
df = df.replace('Mr', '', regex=True)
print(df)
Result
X
0 Mr A
1 Mr B
2 Mr C
X
0 A
1 B
2 C
Upvotes: 1