Reputation: 2643
I have a pandas dataframe like this,
>>> data = {
'hotel_code': [1, 1, 1, 1, 1],
'feed': [1, 1, 1, 1, 2],
'price_euro': [100, 200, 250, 120, 130],
'client_nationality': ['fr', 'us', 'ru,de', 'gb', 'cn,us,br,il,fr,gb,de,ie,pk,pl']
}
>>> df = pd.DataFrame(data)
>>> df
hotel_code feed price_euro client_nationality
0 1 1 100 fr
1 1 1 200 us
2 1 1 250 ru,de
3 1 1 120 gb
4 1 2 130 cn,us,br,il,fr,gb,de,ie,pk,pl
And here is expected output,
>>> data = {
'hotel_code': [1, 1],
'feed': [1, 2],
'cluster1': ['fr', 'cn,us,br,il,fr,gb,de,ie,pk,pl'],
'cluster2': ['us', np.nan],
'cluster3': ['ru,de', np.nan],
'cluster4': ['gb', np.nan],
}
>>> df = pd.DataFrame(data)
>>> df
hotel_code feed cluster1 cluster2 cluster3 cluster4
0 1 1 fr us ru,de gb
1 1 2 cn,us,br,il,fr,gb,de,ie,pk,pl NaN NaN NaN
I want to create cluster columns by unique hotel_code
and feed
but I have no idea. Cluster numbers are changeable. Any idea? Thanks in advance.
Upvotes: 1
Views: 143
Reputation: 10970
Groupby on hotel_code
and feed
, then aggregate on client_nationality
and finally split and expand.
Update columns with required suffix.
df.groupby(['hotel_code', 'feed'])['client_nationality']
.agg(' '.join)
.str.split(' ', expand=True)
.rename(columns = lambda x: f'cluster_{x+1}')
Output
cluster_1 cluster_2 cluster_3 cluster_4
hotel_code feed
1 1 fr us ru,de gb
2 cn,us,br,il,fr,gb,de,ie,pk,pl None None None
Upvotes: 3
Reputation: 863701
Use GroupBy.cumcount
for counter per groups, create MultiIndex by hotel_code
with feed
and counter Series
and reshape by Series.unstack
, last rename
columns and DataFrame.reset_index
for MultiIndex
to columns:
g = df.groupby(["hotel_code", "feed"]).cumcount()
df1 = (df.set_index(["hotel_code", "feed", g])['client_nationality']
.unstack()
.rename(columns = lambda x: f'cluster_{x+1}')
.reset_index())
print (df1)
hotel_code feed cluster_1 cluster_2 cluster_3 \
0 1 1 fr us ru,de
1 1 2 cn,us,br,il,fr,gb,de,ie,pk,pl NaN NaN
cluster_4
0 gb
1 NaN
Upvotes: 5
Reputation: 10573
You could create a new dataframe with your clusters:
clusters = pd.DataFrame(
df.groupby(["hotel_code", "feed"])
.agg(list)
.reset_index()
.client_nationality.tolist()
)
clusters.columns = [f"cluster_{i}" for i in range(1, clusters.shape[1] + 1)]
Then,
pd.concat(
[
df.drop(["price_euro", "client_nationality"], axis=1)
.drop_duplicates(["hotel_code", "feed"])
.reset_index(drop=True),
clusters,
],
axis=1,
)
would return
hotel_code feed cluster_1 cluster_2 cluster_3 cluster_4
0 1 1 fr us ru,de gb
1 1 2 cn,us,br,il,fr,gb,de,ie,pk,pl None None None
Upvotes: 3