Reputation: 3968
I have the following unstructured data (read from a csv).
data = [[b'id' b'datetime' b'anomaly_length' b'affected_sensors' b'reason']
[b'1' b'2019-12-20 08:09' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:10' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:11' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:12' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:13' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:14' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:15' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:16' b'26' b'all' b'Open Windows']
[b'1' b'2019-12-20 08:17' b'26' b'all' b'Open Windows']]
...
I currently create structured arrays by using the following code:
labels_id = np.array(data[1:,0], dtype=int)
labels = [dt.datetime.strptime(date.decode("utf-8"), '%Y-%m-%d %H:%M') for date in np.array(data[1:,1])]
labels_length = np.array(data[1:,2], dtype=int)
This code is necessary because I need data with the correct datatype. In the function, I pass all the arrays and access them by index. I don't like this solution but because the function is called multiple times I don't want to cast the data inside the function each time.
Origin function code:
def special_find(labels_id, labels, labels_length):
for i, id in enumerate(labels_id):
print(id)
print(labels[i])
print(labels_length[i])
...
Expected: I want to have a structured array which only contains the needed columns:
structured_data = [[1 datetime.datetime(2019, 12, 20, 8, 9) b'2019-12-20 08:09' 26],
[1 datetime.datetime(2019, 12, 20, 8, 10) 26],
[1 datetime.datetime(2019, 12, 20, 8, 11) 26],
[1 datetime.datetime(2019, 12, 20, 8, 12) 26],
[1 datetime.datetime(2019, 12, 20, 8, 13) 26],
[1 datetime.datetime(2019, 12, 20, 8, 14) 26],
...
I know I could concat all the created arrays but I don't think this is a good solution. Instead, I am searching for something like this:
structured_data = np.array(data[1:, 0:3], dtype=...)
UPDATE: here are some values for a csv file
id,datetime,anomaly_length,affected_sensors,reason
1,2019-12-20 08:09,26,all,Open Windows
1,2019-12-20 08:10,26,all,Open Windows
1,2019-12-20 08:11,26,all,Open Windows
1,2019-12-20 08:12,26,all,Open Windows
1,2019-12-20 08:13,26,all,Open Windows
1,2019-12-20 08:14,26,all,Open Windows
1,2019-12-20 08:15,26,all,Open Windows
1,2019-12-20 08:16,26,all,Open Windows
1,2019-12-20 08:17,26,all,Open Windows
Upvotes: 0
Views: 173
Reputation: 3968
I combined the read_csv
from pandas together with `converters:
import pandas as pd
import datetime as dt
filename = './data.csv'
to_date = lambda value: (dt.datetime.strptime(value, '%Y-%m-%d %H:%M'))
values = pd.read_csv(filename, converters={'datetime': to_date})
print(values.dtypes)
>>> OUTPUT:
>>> id int64
>>> datetime datetime64[ns]
>>> anomaly_length int64
>>> affected_sensors object
>>> reason object
>>> dtype: object
Upvotes: 0
Reputation: 231335
I tried to recreate your csv file with:
In [23]: cat stack59665655.txt
id, datetime, anomaly_length, affected_sensors, reason
1, 2019-12-20 08:09, 26, all, Open Windows
1, 2019-12-20 08:10, 26, all, Open Windows
1, 2019-12-20 08:11, 26, all, Open Windows
With pandas
I can read it with:
In [24]: data = pd.read_csv('stack59665655.txt')
In [25]: data
Out[25]:
id datetime anomaly_length affected_sensors reason
0 1 2019-12-20 08:09 26 all Open Windows
1 1 2019-12-20 08:10 26 all Open Windows
2 1 2019-12-20 08:11 26 all Open Windows
In [26]: data.dtypes
Out[26]:
id int64
datetime object
anomaly_length int64
affected_sensors object
reason object
dtype: object
The object
columns contain strings. I suspect pandas has a way of converting that datetime
string column to datetime
objects or np.datetime64
.
The simple conversion to array, produces an object dtype array:
In [27]: data.to_numpy()
Out[27]:
array([[1, ' 2019-12-20 08:09', 26, ' all', ' Open Windows'],
[1, ' 2019-12-20 08:10', 26, ' all', ' Open Windows'],
[1, ' 2019-12-20 08:11', 26, ' all', ' Open Windows']],
dtype=object)
to_records
produces a record
array, a variant on a structured array. Note the compound dtype:
In [28]: data.to_records()
Out[28]:
rec.array([(0, 1, ' 2019-12-20 08:09', 26, ' all', ' Open Windows'),
(1, 1, ' 2019-12-20 08:10', 26, ' all', ' Open Windows'),
(2, 1, ' 2019-12-20 08:11', 26, ' all', ' Open Windows')],
dtype=[('index', '<i8'), ('id', '<i8'), (' datetime', 'O'), (' anomaly_length', '<i8'), (' affected_sensors', 'O'), (' reason', 'O')])
Instead, using genfromtxt
with it's auto-dtype mode:
In [29]: data1 =np.genfromtxt('stack59665655.txt',dtype=None, names=True,delimit
...: er=',',encoding=None, autostrip=True)
In [30]: data1
Out[30]:
array([(1, '2019-12-20 08:09', 26, 'all', 'Open Windows'),
(1, '2019-12-20 08:10', 26, 'all', 'Open Windows'),
(1, '2019-12-20 08:11', 26, 'all', 'Open Windows')],
dtype=[('id', '<i8'), ('datetime', '<U16'), ('anomaly_length', '<i8'), ('affected_sensors', '<U3'), ('reason', '<U12')])
I could convert the datetime
field with:
In [31]: data1['datetime']
Out[31]:
array(['2019-12-20 08:09', '2019-12-20 08:10', '2019-12-20 08:11'],
dtype='<U16')
In [32]: data1['datetime'].astype('datetime64[m]')
Out[32]:
array(['2019-12-20T08:09', '2019-12-20T08:10', '2019-12-20T08:11'],
dtype='datetime64[m]')
Changing this in-place actually requires defining a new dtype.
Or I could construct a custom dtype, for example by modifying the one deduced for data1
:
In [45]: dt = data1.dtype.descr
In [46]: dt[1]=('datetime', 'datetime64[m]')
In [47]: dt= np.dtype(dt)
In [48]: dt
Out[48]: dtype([('id', '<i8'), ('datetime', '<M8[m]'), ('anomaly_length', '<i8'), ('affected_sensors', '<U3'), ('reason', '<U12')])
In [49]: data2 =np.genfromtxt('stack59665655.txt',dtype=dt, names=True,delimiter
...: =',',encoding=None, autostrip=True)
In [50]: data2
Out[50]:
array([(1, '2019-12-20T08:09', 26, 'all', 'Open Windows'),
(1, '2019-12-20T08:10', 26, 'all', 'Open Windows'),
(1, '2019-12-20T08:11', 26, 'all', 'Open Windows')],
dtype=[('id', '<i8'), ('datetime', '<M8[m]'), ('anomaly_length', '<i8'), ('affected_sensors', '<U3'), ('reason', '<U12')])
To use datetime
objects, I'd have to use a converter
in `genfromtxt.
Upvotes: 1
Reputation: 4576
Since you've already converted the columns to NumPy arrays of the correct data type, it is easy to create a Pandas DataFrame
from them, for example:
import pandas as pd
df = pd.DataFrame({
'id': labels_id,
'datetime': labels,
'anomaly_length': labels_length
})
>>> df
id datetime anomaly_length
0 1 2019-12-20 08:09:00 26
1 1 2019-12-20 08:10:00 26
2 1 2019-12-20 08:11:00 26
3 1 2019-12-20 08:12:00 26
4 1 2019-12-20 08:13:00 26
5 1 2019-12-20 08:14:00 26
6 1 2019-12-20 08:15:00 26
7 1 2019-12-20 08:16:00 26
8 1 2019-12-20 08:17:00 26
The Pandas docs have a good introduction on how to work with these objects.
Upvotes: 1