Reputation: 3225
Suppose I have the follow DAG (basic placeholder functions), that uses a for-loop to dynamically generate tasks (from iterating over a list):
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
default_args = {
'owner': 'ETLUSER',
'depends_on_past': False,
'start_date': datetime(2019, 12, 16, 0, 0, 0),
'email': ['xxx@xxx.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5)
}
dag = DAG('xxx', catchup=False,
default_args=default_args, schedule_interval='0 */4 * * *')
# Some dummy function
def StepOne(x):
print(x)
def StepTwo():
print("Okay, we finished all of Step 1.")
some_list = [1, 2, 3, 4, 5, 6]
for t in some_list:
task_id = f'FirstStep_{t}'
task = PythonOperator(
task_id=task_id,
python_callable=StepOne,
provide_context=False,
op_kwargs={'x': str(t)},
dag=dag
)
task
I want to introduce some additional task that's simply:
task2 = PythonOperator(
task_id="SecondStep",
python_callable=StepTwo,
provide_context=False,
dag=dag
)
That runs only after all the steps in the first have finished. Linearly, this would be task >> task2
How do I go about doing this?
Upvotes: 2
Views: 2014
Reputation: 9363
You can have task dependencies with array.
Do taskC after both taskA and taskB finished.
[taskA, taskB] >> taskC
or
Do taskB and taskC in parallel after taskA finished.
taskA >> [taskB, taskC]
as long as 1 side of upstream or downstream are non-array.
Thus, for your example,
task1 = []
for t in some_list:
task_id = f'FirstStep_{t}'
task1.append(PythonOperator(
task_id=task_id,
python_callable=StepOne,
provide_context=False,
op_kwargs={'x': str(t)},
dag=dag))
task2 = PythonOperator(
task_id="SecondStep",
python_callable=StepTwo,
provide_context=False,
dag=dag)
task1 >> task2
Upvotes: 3