Reputation: 501
i have a dataframe called Data
Date Value Frequency
06/01/2020 256 A
07/01/2020 235 A
14/01/2020 85 Q
16/01/2020 625 Q
22/01/2020 125 Q
here it is observed that 6/01/2020 and 07/01/2020 are in the same week that is monday and tuesday. Therefore i wanted to take maximum date from week.
my final dataframe should look like this
Date Value Frequency
07/01/2020 235 A
16/01/2020 625 Q
22/01/2020 125 Q
I want the maximum date from the week , like i have showed in my final dataframe example.
I am new to python, And i am searching answer for this which i didnt find till now ,Please help
Upvotes: 2
Views: 238
Reputation: 862711
First convert column to datetimes by to_datetime
and use DataFrameGroupBy.idxmax
for rows with maximum datetime per rows with Series.dt.strftime
, last select rows by DataFrame.loc
:
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
print (df['Date'].dt.strftime('%Y-%U'))
0 2020-01
1 2020-01
2 2020-02
3 2020-02
4 2020-03
Name: Date, dtype: object
df = df.loc[df.groupby(df['Date'].dt.strftime('%Y-%U'))['Date'].idxmax()]
print (df)
Date Value Frequency
1 2020-01-07 235 A
3 2020-01-16 625 Q
4 2020-01-22 125 Q
If format of datetimes cannot be changed:
d = pd.to_datetime(df['Date'], dayfirst=True)
df = df.loc[d.groupby(d.dt.strftime('%Y-%U')).idxmax()]
print (df)
Date Value Frequency
1 07/01/2020 235 A
3 16/01/2020 625 Q
4 22/01/2020 125 Q
Upvotes: 2