Michelle
Michelle

Reputation: 11

Stacked barplot for single cell analysis

I'm attempting to plot a stacked barplot with ggplot2 with this code

barplot <- ggplot() + geom_bar(aes(y = percentage, x = TBD, fill = TBD), data = charts.data, stat="identity")

I want to create a barplot for my single cell analysis that has 2 conditions, a treated and an untreated condition. I want to show with the barplot, the percentage of different cell types per condition to see whether the treated with having an effect on the different cell types.

How do I go about determining the percent of each cell type in each condition and then go about plotting the barplot?

output of dput(head(comparison))

structure(c(6051L, 1892L, 1133L, 893L, 148L, 868L, 5331L, 3757L, 
1802L, 1061L, 2786L, 704L), .Dim = c(6L, 2L), .Dimnames = structure(list(c("Fibroblast", "T cell", "Macrophage", "Stellate", "Acinar", "Endothelial"), c("treated", "untreated")), .Names = c("", 
"")), class = "table")

output of dput(head(cell_cycle_data))

structure(list(orig.ident = c("treated", "treated", "treated", 
    "treated", "treated", "treated"), nCount_RNA = c(1892, 307, 1348, 
    3699, 4205, 4468), nFeature_RNA = c(960L, 243L, 765L, 1612L, 
    1341L, 1644L), percent.mt = c(0.211416490486258, 1.62866449511401, 
    4.45103857566766, 4.4065963773993, 0.0713436385255648, 3.87197851387645
    ), RNA_snn_res.0.5 = structure(c(11L, 11L, 5L, 6L, 11L, 13L), .Label = c("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", 
    "13", "14", "15", "16", "17", "18", "19"), class = "factor"), seurat_clusters = structure(c(11L, 11L, 5L, 6L, 11L, 13L), .Label = c("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19"), class = "factor"), S.Score = c(0.476893835992198, -0.0200784617568548, -0.0335915198305002, -0.0247184276246385, 0.010785196602457, 0.0190008903712199), G2M.Score = c(0.204441469200986, 0.173804859670862, -0.0313235510969097, -0.0376796363661889, -0.0559526905696905, -0.0122031631356698), Phase = structure(c(3L, 2L, 1L, 1L, 3L, 3L), .Label = c("G1", "G2M", "S"), class = "factor"), old.ident = structure(c(7L,7L, 1L, 4L, 7L, 9L), .Label = c("Fibroblast", "T cell", "Macrophage", "Stellate", "Acinar", "Endothelial", "Tumor", "B cell", "Mast cell", "Ductal", "Islets of Langerhans"), class = "factor")), row.names = c("treated_AAACGCTAGCGGGTTA-1", "treated_AAAGGTAAGTACAGAT-1", "treated_AAAGTGAGTTTGATCG-1", "treated_AAATGGACAAAGTGTA-1", 
    "treated_AACAAAGGTCGACTTA-1", "treated_AACAGGGTCCTAGCCT-1"), class = "data.frame")

output of dput(tail(comparison))

structure(list(orig.ident = c("untreated", "untreated", "untreated", 
"untreated", "untreated", "untreated"), nCount_RNA = c(901, 823, 
1184, 1835, 1147, 1407), nFeature_RNA = c(482L, 479L, 649L, 1043L, 
604L, 709L), percent.mt = c(1.77580466148724, 2.91616038882138, 
4.22297297297297, 3.86920980926431, 2.0052310374891, 4.05117270788913
), RNA_snn_res.0.5 = structure(c(7L, 7L, 7L, 14L, 7L, 7L), .Label = c("0", 
"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", 
"13", "14", "15", "16", "17", "18", "19"), class = "factor"), 
    seurat_clusters = structure(c(7L, 7L, 7L, 14L, 7L, 7L), .Label = c("0", 
    "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", 
    "12", "13", "14", "15", "16", "17", "18", "19"), class = "factor"), 
    S.Score = c(-0.0320858200243315, 0.0304725660342869, 0.0215996091745327, 
    0.0384166213301423, 0.144956251122548, -0.0242770509986111
    ), G2M.Score = c(0.0904224391544142, 0.050148242050667, -0.0178041670730754, 
    -0.0112596867977946, -0.0519554524339088, -0.0136533184257381
    ), Phase = structure(c(2L, 2L, 3L, 3L, 3L, 1L), .Label = c("G1", 
    "G2M", "S"), class = "factor"), old.ident = structure(c(5L, 
    5L, 5L, 5L, 5L, 5L), .Label = c("Fibroblast", "T cell", "Macrophage", 
    "Stellate", "Acinar", "Endothelial", "Tumor", "B cell", "Mast cell", 
    "Ductal", "Islets of Langerhans"), class = "factor")), row.names = c("untreated_TTTGGTTGTCTAATCG-18", 
"untreated_TTTGGTTTCCCGAGGT-18", "untreated_TTTGTTGAGAACTGAT-18", 
"untreated_TTTGTTGAGCTCGGCT-18", "untreated_TTTGTTGAGTGCCTCG-18", 
"untreated_TTTGTTGCACGGTGCT-18"), class = "data.frame")

Upvotes: 0

Views: 5841

Answers (1)

dc37
dc37

Reputation: 16178

Without knowing the structure of your data, it's really hard to guess what will be the good code for your example.

however, if we assume that you have for each conditions, you have a list of individual cells, each with a particular label corresponding to their cell type such as in the following example:

set.seed(123)
Untreated <- data.frame(Cell_Type = sample(LETTERS[1:4],10, replace = TRUE))
Treated <- data.frame(Cell_Type =sample(LETTERS[1:4],25, replace = TRUE))

  Cell_Type
1         C
2         C
3         C
4         B
5         C
6         B
...       ...

You can use dplyr to first bind_rows:

library(dplyr)
Untreated <- Untreated %>% mutate(Condition = "Untreated")
Treated <- Treated %>% mutate(Condition = "Treated")
DF <- bind_rows(Untreated, Treated)

  Cell_Type Condition
1         C Untreated
2         C Untreated
3         C Untreated
4         B Untreated
5         C Untreated
6         B Untreated

Then, you can count for the number of each cell type into each condition and express it as a percentage:

DF <- DF %>% group_by(Condition, Cell_Type) %>% 
  summarise(Nb = n()) %>%
  mutate(C = sum(Nb)) %>%
  mutate(percent = Nb/C*100)

# A tibble: 7 x 5
# Groups:   Condition [2]
  Condition Cell_Type    Nb     C percent
  <chr>     <chr>     <int> <int>   <dbl>
1 Treated   A             7    25     28.
2 Treated   B             7    25     28.
3 Treated   C             6    25     24 
4 Treated   D             5    25     20 
5 Untreated A             1    10     10 
6 Untreated B             4    10     40 
7 Untreated C             5    10     50 

Then, you can plot the results a stacked barchart for each condition and filled each color according to the Cell_Type:

library(ggplot2)
ggplot(DF, aes(x = Condition, y = percent, fill = Cell_Type))+
  geom_bar(stat = "identity")+
  geom_text(aes(label = paste(percent,"%")), position = position_stack(vjust = 0.5))

enter image description here

EDIT: Plotting using data provided by the OP

Using the data you provided in your question, you can do:

df <- structure(c(6051L, 1892L, 1133L, 893L, 148L, 868L, 5331L, 3757L, 
            1802L, 1061L, 2786L, 704L), .Dim = c(6L, 2L), .Dimnames = structure(list(c("Fibroblast", "T cell", "Macrophage", "Stellate", "Acinar", "Endothelial"), c("treated", "untreated")), .Names = c("", 
                                                                                                                                                                                                          "")), class = "table")
df <- data.frame(df)

Which gives the following dataframe:

          Var1      Var2 Freq
1   Fibroblast   treated 6051
2       T cell   treated 1892
3   Macrophage   treated 1133
4     Stellate   treated  893
5       Acinar   treated  148
6  Endothelial   treated  868
7   Fibroblast untreated 5331
8       T cell untreated 3757
9   Macrophage untreated 1802
10    Stellate untreated 1061
11      Acinar untreated 2786
12 Endothelial untreated  704

And then, you can rename your column, calculate the percent of each cell type for each condition:

library(dplyr)
DF <- df %>% rename(Cell_Type = Var1, Condition = Var2) %>%
  group_by(Condition) %>% 
  mutate(Percent = Freq / sum(Freq)*100)

# A tibble: 12 x 4
# Groups:   Condition [2]
   Cell_Type   Condition  Freq Percent
   <fct>       <fct>     <int>   <dbl>
 1 Fibroblast  treated    6051   55.1 
 2 T cell      treated    1892   17.2 
 3 Macrophage  treated    1133   10.3 
 4 Stellate    treated     893    8.13
 5 Acinar      treated     148    1.35
 6 Endothelial treated     868    7.90
 7 Fibroblast  untreated  5331   34.5 
 8 T cell      untreated  3757   24.3 
 9 Macrophage  untreated  1802   11.7 
10 Stellate    untreated  1061    6.87
11 Acinar      untreated  2786   18.0 
12 Endothelial untreated   704    4.56

Then, for the plotting part:

library(ggplot2)
ggplot(DF, aes(x = Condition, y = Percent, fill = Cell_Type))+
  geom_bar(stat = "identity")+
  geom_text(aes(label = paste(round(Percent,2),"%")), position = position_stack(vjust =  0.5))

enter image description here

Does it answer your question ?

Upvotes: 1

Related Questions