Naveen Subramanian
Naveen Subramanian

Reputation: 79

Pyspark join dataframe on comma separted values in a column

So i have two data frames which i want to join. The catch is the second table has comma separted values stored in it out of which one matches with the column in Table A. How do I it in Pyspark. Below is an example

Table A has

+-------+--------------------+
|deal_id|           deal_name|
+-------+--------------------+
| 613760|ABCDEFGHI           |
| 613740|TEST123             |
| 598946|OMG                 |   

Table B has

+-------+---------------------------+--------------------+
|                            deal_id|           deal_type|                           
+-------+---------------------------+--------------------+
| 613760,613761,613762,613763       |Direct De           |
| 613740,613750,613770,613780,613790|Direct              |
| 598946                            |In                  |  

Expected Result - Join table A and Table B when there is a match with Table A's deal ID against Table B's comma separted value. For instance TableA.dealid - 613760 is in table B's 1 st row, i want that row returned.

+-------+--------------------+---------------+
|deal_id|           deal_name|      deal_type|
+-------+--------------------+---------------+
| 613760|ABCDEFGHI           |Direct De      |     
| 613740|TEST123             |Direct         |
| 598946|OMG                 |In             |

Any assistance is appreciated. I need it in pyspark.

Thanks.

Upvotes: 0

Views: 1135

Answers (1)

SQL.injection
SQL.injection

Reputation: 2647

Sample data

from pyspark.sql.types import IntegerType, LongType, StringType, StructField, StructType

tuples_a = [('613760', 'ABCDEFGHI'),
            ('613740', 'TEST123'),
            ('598946', 'OMG'),
           ]

schema_a = StructType([
         StructField('deal_id', StringType(), nullable=False),
         StructField('deal_name', StringType(), nullable=False)
        ])


tuples_b = [('613760,613761,613762,613763 ', 'Direct De'),
            ('613740,613750,613770,613780,613790', 'Direct'),
            ('598946', 'In'),
           ]

schema_b = StructType([
         StructField('deal_id', StringType(), nullable=False),
         StructField('deal_type', StringType(), nullable=False)
        ])        

df_a = spark_session.createDataFrame(data=tuples_a, schema=schema_a)
df_b = spark_session.createDataFrame(data=tuples_b, schema=schema_b) 

You need to split the column and explode it in order to join.

from pyspark.sql.functions import split, col, explode

df_b = df_b.withColumn('split', split(col('deal_id'), ','))\
           .withColumn('exploded', explode(col('split')))\
           .drop('deal_id', 'split')\
           .withColumnRenamed('exploded', 'deal_id')


df_a.join(df_b, on = 'deal_id', how = 'left_outer')\
    .show(10, False)

and the expected result

+-------+---------+---------+
|deal_id|deal_name|deal_type|
+-------+---------+---------+
|613760 |ABCDEFGHI|Direct De|
|613740 |TEST123  |Direct   |
|598946 |OMG      |In       |
+-------+---------+---------+

Upvotes: 1

Related Questions