Reputation: 31
I have a Dataframe called 'new_api_df'
with a column called new_api_df['Categories']
that contains a list of dictionaries:
[{'CallId': 22143866, 'BucketId': 1953, 'SectionId': 1256, 'BucketFullName': 'Categories.Filters.No Sale Made', 'Weight': 1.0}
, {'CallId': 22143866, 'BucketId': 2016, 'SectionId': 1255, 'BucketFullName': 'Categories.Imported.Objections', 'Weight': 3.0}
, {'CallId': 22143866, 'BucketId': 2017, 'SectionId': 1255, 'BucketFullName': 'Categories.Imported.Touting Benefits', 'Weight': 1.0}
]
I want to take every 'BucketFullName' and place those values into a list in a separate column new_api_df['category_list']
as such:
['Categories.Filters.No Sale Made', 'Categories.Imported.Objections', Categories.Imported.Touting Benefits']
I've tried using list comprehension, as such:
new_api_df['category_list'] =[item['BucketFullName'] for dictionary in new_api_df['Categories'] for item in dictionary]
but get the error: ValueError: Length of values does not match length of index
I've also tried apply and list comprehension:
new_api_df['category_list'] = new_api_df['Categories'].apply([item['BucketFullName'] for dictionary in new_api_df['Categories'] for item in dictionary])
but I get the following error:
AttributeError: 'Categories.Filters.No Sale Made' is not a valid function for 'Series' object
I've also tried: new_api_df['category_list'] = df['Categories'].apply(lambda x: x['BucketFullName'])
but get the error: TypeError: list indices must be integers or slices, not str
new_api_df slices:
new_api_df.loc[0]:
Contact {'Id': 22143866, 'Type': 'Call', 'WavPath': '\...
RecordInfo {'Id': 22143866, 'RowNumber': 1, 'TotalRowCoun...
Measures {'ID': 22143866, 'TotalHoldCount': 0, 'Agitati...
Others {'ConfidenceAverage': 69, 'SequenceID': None, ...
Sections [{'CallId': 22143866, 'SectionId': 1041, 'Sect...
Categories [{'CallId': 22143866, 'BucketId': 1953, 'Secti...
Scores [{'CallId': 22143866, 'ScoreId': 399, 'ScoreNa...
ScoreComponents [{'CallId': 22143866, 'ScoreComponentId': 4497...```
Upvotes: 1
Views: 81
Reputation: 30930
I think you want
df=pd.DataFrame({'Categories':[{'CallId': 22143866, 'BucketId': 1953, 'SectionId': 1256, 'BucketFullName': 'Categories.Filters.No Sale Made', 'Weight': 1.0}
, {'CallId': 22143866, 'BucketId': 2016, 'SectionId': 1255, 'BucketFullName': 'Categories.Imported.Objections', 'Weight': 3.0}
, {'CallId': 22143866, 'BucketId': 2017, 'SectionId': 1255, 'BucketFullName': 'Categories.Imported.Touting Benefits', 'Weight': 1.0}
]})
df['category_list']=df['Categories'].apply(lambda x: x[0]['BucketFullName'])
print(df)
# Categories \
#0 {'CallId': 22143866, 'BucketId': 1953, 'Sectio...
#1 {'CallId': 22143866, 'BucketId': 2016, 'Sectio...
#2 {'CallId': 22143866, 'BucketId': 2017, 'Sectio...
#
# category_list
#0 Categories.Filters.No Sale Made
#1 Categories.Imported.Objections
#2 Categories.Imported.Touting Benefits
UPDATE
Note that this creates a list for each cell.
df['category_list']=df['Categories'].apply(lambda x: [m_dict['BucketFullName'] for m_dict in x])
then you can use DataFrame.explode
df = df.explode('category_list')
#(df['Categories'].apply(lambda x: [m_dict['BucketFullName'] for m_dict in x])
# .explode()) #check the explode serie
Upvotes: 1