Reputation: 4353
I have a recommender system that I need to train, and I included the entire training procedure inside a function:
def train_model(data):
model = Recommender()
Recommender.train(data)
pred = Recommender.predict(data)
return pred
something like this. Now if I want to train this inside a loop, for different datasets, like:
preds_list = []
data_list = [dataset1, dataset2, dataset3...]
for data_subset in data_list:
preds = train_model(data_subset)
preds_list += [preds]
How can I make sure that every time I call the train_model
function, a brand new instance of a recommender is created, not an old one, trained on the previous dataset?
Upvotes: 0
Views: 2000
Reputation: 19790
You are already creating a new instance everytime you execute train_model
. The thing you are not using the new instance.
You probably meant:
def train_model(data):
model = Recommender()
model.train(data)
pred = model.predict(data)
return pred
Upvotes: 3
Reputation: 1300
Use the instance you've instantiated, not the class
class Recommender:
def __init__(self):
self.id = self
def train(self, data):
return data
def predict(self, data):
return data + str(self.id)
def train_model(data):
model = Recommender()
model.train(data)
return model.predict(data)
data = 'a data '
x = {}
for i in range(3):
x[i] = train_model(data)
print(x[i])
# a data <__main__.Recommender object at 0x11cefcd10>
# a data <__main__.Recommender object at 0x11e0471d0>
# a data <__main__.Recommender object at 0x11a064d50>
Upvotes: 0