Reputation: 75
I've a corpus and I divided it into 3 parts.
I've the below CNN model trained on Training set and Evaluated against Dev set
model.add(SpatialDropout1D(0.1))
model.add(Conv1D(128, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Flatten())
# Fully connected (Dense layer)
model.add(Dense(64, activation='relu'))
# Output layer with sigmoid activation function
model.add(Dense(8, activation='sigmoid'))
I've saved this model using model.save('model.h5')
Now, I'd like to do the hyper parameter optimization on the saved trained model, providing my dev set as train set and test set to evaluate.
My Values are
Filters 32/64/128/192/256/512 128/64
Kernel size 2/3/4/5/7 3
Dropout rate 0.1/0.2/0.3/0.4/0.5 0.1/0.25
Dense layer size 16/32/64/128/256 32
Batch size 32/50/64/100 32
Learning rate 0.1/0.01/0.001
Any pointers how to achieve this using any library like Talos loading existing model?
Upvotes: 1
Views: 247
Reputation: 315
Following your last comment, and from Keras documentation:
(look for "grid", the scikit-learn grid search for hyper-parameters fine tuning. The following code should be fully running as is. You can use the same method with your saved/loaded model, using the datasets you wish)
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.wrappers.scikit_learn import KerasClassifier
from keras import backend as K
from sklearn.model_selection import GridSearchCV
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
# load training data and do basic data normalization
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
def make_model(dense_layer_sizes, filters, kernel_size, pool_size):
'''Creates model comprised of 2 convolutional layers followed by dense layers
dense_layer_sizes: List of layer sizes.
This list has one number for each layer
filters: Number of convolutional filters in each convolutional layer
kernel_size: Convolutional kernel size
pool_size: Size of pooling area for max pooling
'''
model = Sequential()
model.add(Conv2D(filters, kernel_size,
padding='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(filters, kernel_size))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
for layer_size in dense_layer_sizes:
model.add(Dense(layer_size))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
return model
dense_size_candidates = [[32], [64], [32, 32], [64, 64]]
my_classifier = KerasClassifier(make_model, batch_size=32)
validator = GridSearchCV(my_classifier,
param_grid={'dense_layer_sizes': dense_size_candidates,
# epochs is avail for tuning even when not
# an argument to model building function
'epochs': [3, 6],
'filters': [8],
'kernel_size': [3],
'pool_size': [2]},
scoring='neg_log_loss',
n_jobs=1)
validator.fit(x_train, y_train)
print('The parameters of the best model are: ')
print(validator.best_params_)
# validator.best_estimator_ returns sklearn-wrapped version of best model.
# validator.best_estimator_.model returns the (unwrapped) keras model
best_model = validator.best_estimator_.model
metric_names = best_model.metrics_names
metric_values = best_model.evaluate(x_test, y_test)
for metric, value in zip(metric_names, metric_values):
print(metric, ': ', value)
Upvotes: 1