Reputation: 564
so Im attempting to updated records in database by id's.
Cost
database:
table =
id Cost
000074800795 157.05974458228403
000074801136 80.637745302714
000074801299 7
000074800300 13
000074800955 10
my code:
df = pd.DataFrame({ "id": [000074800795 , 000074801136, 000074801299,000074800300, 000074800955] ,
"Cost" : [157.05974458228403 ,80.637745302714, 7, 13, 10] })
# replacing Null
df = df.where((pd.notnull(df)), None)
# reset index for For loop
df = df.reset_index()
df.id = df.id.astype(str)
#df.Cost = df.Cost.astype(str)
df.dtypes
out[101]:
index int64
id object
Cost object
dtype: object
values_list = []
for i in range(len(df)):
values_list.append({ "id": df["id"][i] ,
"Cost": df["Cost"][i] ,
})
print(values_list[0:2])
[{'id': '000074800795', 'Cost': 157.05974458228403}, {'id': '000074801136', 'Cost': 80.637745302714}]
Loading at db.
I dont get any errors, but it should match the id's then replace only Cost
engine = db.create_engine("my connection")
connection = engine.connect()
metadata = db.MetaData()
# Creating Table
data = db.Table('table', metadata,
db.Column('id', db.String(100), nullable=True),
db.Column('Cost', db.String(100), nullable=True),
extend_existing=True
)
metadata.create_all(engine)
query = db.update(data)
ResultProxy = connection.execute(query, values_list)
engine.dispose()
table =
id Cost
000074800955 10
000074800955 10
000074800955 10
000074800955 10
000074800955 10
Upvotes: 0
Views: 2182
Reputation: 587
Are you doing import sqlalchemy
as db? It seems you think the dictionary can work as a primary key update dictionary, but I don't think that's how it works. One standard way of doing it is in the docs, and looks like this:
table.update().where(table.c.id==7).values(name='foo')
To do it this way, you need to filter your table down to one row, then run update on that row using the data in your dataframe. Otherwise, without a query, it seems db.update will update everything in your table.
Try something like this:
import pandas as pd
import sqlalchemy as db
metadata = db.MetaData()
table = db.Table('table', metadata,
db.Column('id', db.String(100), nullable=True),
db.Column('Cost', db.String(100), nullable=True),
extend_existing=True
)
df = pd.DataFrame({
'id': ['000074800795', '000074801136', '000074801299', '000074800300', '000074800955'],
'Cost': ['157.05974458228403', '80.637745302714', '7', '13', '10']
})
for index, row in df.iterrows():
id_value = row['id']
cost_value = row['Cost']
table.update().where(table.c.id == id_value).values(Cost=cost_value)
There are certainly changes we could make to the style here, but hopefully this directs you in the right direction.
Upvotes: 1