Reputation: 930
I think the easiest way to explain what I am trying to do is by showing an example:
Given a DataFrame
V_set V_reset I_set I_reset HRS LRS ID
0 0.599417 -0.658417 0.000021 -0.000606 84562.252849 1097.226787 1383.0
1 0.595250 -0.684708 0.000023 -0.000617 43234.544776 1144.445368 1384.0
2 0.621229 -0.710812 0.000026 -0.000625 51719.718749 1216.609759 1385.0
3 0.625292 -0.720104 0.000029 -0.000625 40827.993527 1209.966052 1386.0
4 0.634563 -0.735937 0.000029 -0.000641 46881.785573 1219.497465 1387.0
... ... ... ... ... ... ...
1066 0.167521 0.000000 0.000581 0.000000 720.116614 708.098519 2811.0
1067 0.167360 0.000000 0.000581 0.000000 718.165882 708.284487 2812.0
1068 0.172812 0.000000 0.000278 0.000000 715.302620 708.167571 2813.0
1069 0.167729 0.000000 0.000581 0.000000 716.096291 708.333064 2814.0
1070 0.173037 0.000000 0.000278 0.000000 715.474310 707.980273 2815.0
and a subset of a second DataFrame df.loc[(df['HRS'].isnull()) & (df['wfm']=='shr'), ['HRS','LRS','V_set','V_reset','I_set','I_reset', 'ID']]
:
V_set V_reset I_set I_reset HRS LRS ID
1383 NaN NaN NaN NaN NaN NaN 1383.0
1384 NaN NaN NaN NaN NaN NaN 1384.0
1385 NaN NaN NaN NaN NaN NaN 1385.0
1386 NaN NaN NaN NaN NaN NaN 1386.0
1387 NaN NaN NaN NaN NaN NaN 1387.0
... ... ... ... ... ... ...
2811 NaN NaN NaN NaN NaN NaN 2811.0
2812 NaN NaN NaN NaN NaN NaN 2812.0
2813 NaN NaN NaN NaN NaN NaN 2813.0
2814 NaN NaN NaN NaN NaN NaN 2814.0
2815 NaN NaN NaN NaN NaN NaN 2815.0
I want to replace the NaN's from the second DataFrame by the first, BUT at the place where the ID matches, as I am not sure that the selected data will always be in the same order or if all IDs will be included.
I know I could do it with a for and if loop, but I am wondering if there is a faster way. If an ID form the second DataFrame is not included in the first DataFrame the values should just stay as NaN's.
Any help is highly appreciated.
Upvotes: 1
Views: 43
Reputation: 23099
IIUC,
you have common column names and want to replace NaN values with values from your first df.
here's a solution using map
and fillna
this will work if your ID's have a 1 to 1 relationship.
df.set_index('ID',inplace=True)
for column in df.columns:
df2[column] = df2[column].fillna(df2['ID'].map(df[column]))
print(df2)
V_set V_reset I_set I_reset HRS LRS \
1383 0.599417 -0.658417 0.000021 -0.000606 84562.252849 1097.226787
1384 0.595250 -0.684708 0.000023 -0.000617 43234.544776 1144.445368
1385 0.621229 -0.710812 0.000026 -0.000625 51719.718749 1216.609759
1386 0.625292 -0.720104 0.000029 -0.000625 40827.993527 1209.966052
1387 0.634563 -0.735937 0.000029 -0.000641 46881.785573 1219.497465
... ... ... ... ... ... ...
2811 0.167521 0.000000 0.000581 0.000000 720.116614 708.098519
2812 0.167360 0.000000 0.000581 0.000000 718.165882 708.284487
2813 0.172812 0.000000 0.000278 0.000000 715.302620 708.167571
2814 0.167729 0.000000 0.000581 0.000000 716.096291 708.333064
2815 0.173037 0.000000 0.000278 0.000000 715.474310 707.980273
ID
1383 1383.0
1384 1384.0
1385 1385.0
1386 1386.0
1387 1387.0
... NaN
2811 2811.0
2812 2812.0
2813 2813.0
2814 2814.0
2815 2815.0
if you want to fill the entire dataframe and your keys are unique - you can set both ID's as the index and use .fillna
df2.set_index('ID').fillna(df.set_index('ID'))
print(df2)
V_set V_reset I_set I_reset HRS LRS
ID
1383.0 0.599417 -0.658417 0.000021 -0.000606 84562.252849 1097.226787
1384.0 0.595250 -0.684708 0.000023 -0.000617 43234.544776 1144.445368
1385.0 0.621229 -0.710812 0.000026 -0.000625 51719.718749 1216.609759
1386.0 0.625292 -0.720104 0.000029 -0.000625 40827.993527 1209.966052
1387.0 0.634563 -0.735937 0.000029 -0.000641 46881.785573 1219.497465
NaN ... ... ... ... ... ...
2811.0 0.167521 0.000000 0.000581 0.000000 720.116614 708.098519
2812.0 0.167360 0.000000 0.000581 0.000000 718.165882 708.284487
2813.0 0.172812 0.000000 0.000278 0.000000 715.302620 708.167571
2814.0 0.167729 0.000000 0.000581 0.000000 716.096291 708.333064
2815.0 0.173037 0.000000 0.000278 0.000000 715.474310 707.980273
Upvotes: 2