Reputation: 431
I am trying to make a table that shows N (number of observations), percent frequency (of answers > 0), and the lower and upper confidence intervals for percent frequency, and I want to group this by type.
Example of data
dat <- data.frame(
"type" = c("B","B","A","B","A","A","B","A","A","B","A","A","A","B","B","B"),
"num" = c(3,0,0,9,6,0,4,1,1,5,6,1,3,0,0,0)
)
Expected output (with values filled in):
Type N Percent Lower 95% CI Upper 95% CI
A
B
Attempt
library(dplyr)
library(qwraps2)
table<-dat %>%
group_by(type) %>%
summarise(N=n(),
mean.ci = mean_ci(dat$num),
"Percent"=n_perc(num > 0))
This worked to get N and percent frequency, but returned an error: "Column must be length 1 (a summary value), not 3" when I added in mean_ci
The second code I tried, found here:
table2<-dat %>%
group_by(type) %>%
summarise(N.num=n(),
mean.num = mean(dat$num),
sd.num = sd(dat$num),
"Percent"=n_perc(num > 0)) %>%
mutate(se.num = sd.num / sqrt(N.num),
lower.ci = 100*(mean.num - qt(1 - (0.05 / 2), N.num - 1) * se.num),
upper.ci = 100*(mean.num + qt(1 - (0.05 / 2), N.num - 1) * se.num))
# A tibble: 2 x 8
# type N.num mean.num sd.num Percent se.num lower.ci upper.ci
# <fct> <int> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
#1 A 8 2.44 2.83 "6 (75.00\\%)" 1.00 7.35 480.
#2 B 8 2.44 2.83 "4 (50.00\\%)" 1.00 7.35 480.
This gave me an output, but the confidence intervals are not logical.
Upvotes: 1
Views: 5391
Reputation: 7790
IceCreamToucan’s answer is very good. I’m posting this answer to offer a different way to present the information.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(qwraps2)
dat <- data.frame("type" = c("B","B","A","B","A","A","B","A","A","B","A","A","A","B","B","B"),
"num" = c(3,0,0,9,6,0,4,1,1,5,6,1,3,0,0,0))
When building the dplyr::summarize
call you can use the qwraps2::frmtci
call to format the output of qwraps2::mean_ci
into a character string of
length one.
I would also recommend using the data pronoun .data
so you can be explicit
about the variables to summarize.
dat %>%
dplyr::group_by(type) %>%
dplyr::summarize(N = n(),
mean.ci = qwraps2::frmtci(qwraps2::mean_ci(.data$num)),
Percent = qwraps2::n_perc(.data$num > 0))
#> `summarise()` ungrouping output (override with `.groups` argument)
#> # A tibble: 2 x 4
#> type N mean.ci Percent
#> <chr> <int> <chr> <chr>
#> 1 A 8 2.25 (0.52, 3.98) "6 (75.00\\%)"
#> 2 B 8 2.62 (0.34, 4.91) "4 (50.00\\%)"
Created on 2020-09-15 by the reprex package (v0.3.0)
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.0.2 (2020-06-22)
#> os macOS Catalina 10.15.6
#> system x86_64, darwin17.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Denver
#> date 2020-09-15
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.0)
#> backports 1.1.9 2020-08-24 [1] CRAN (R 4.0.2)
#> callr 3.4.4 2020-09-07 [1] CRAN (R 4.0.2)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 4.0.0)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.0)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 4.0.0)
#> devtools 2.3.1 2020-07-21 [1] CRAN (R 4.0.2)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 4.0.0)
#> dplyr * 1.0.2 2020-08-18 [1] CRAN (R 4.0.2)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.0)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.0)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.0)
#> fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
#> generics 0.0.2 2018-11-29 [1] CRAN (R 4.0.0)
#> glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.0)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 4.0.0)
#> knitr 1.29 2020-06-23 [1] CRAN (R 4.0.0)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 4.0.0)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 4.0.0)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 4.0.0)
#> pillar 1.4.6 2020-07-10 [1] CRAN (R 4.0.2)
#> pkgbuild 1.1.0 2020-07-13 [1] CRAN (R 4.0.2)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.0)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 4.0.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.0)
#> processx 3.4.4 2020-09-03 [1] CRAN (R 4.0.2)
#> ps 1.3.4 2020-08-11 [1] CRAN (R 4.0.2)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.0)
#> qwraps2 * 0.5.0 2020-09-14 [1] local
#> R6 2.4.1 2019-11-12 [1] CRAN (R 4.0.0)
#> Rcpp 1.0.5 2020-07-06 [1] CRAN (R 4.0.0)
#> remotes 2.2.0 2020-07-21 [1] CRAN (R 4.0.2)
#> rlang 0.4.7 2020-07-09 [1] CRAN (R 4.0.2)
#> rmarkdown 2.3 2020-06-18 [1] CRAN (R 4.0.0)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 4.0.0)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.0)
#> stringi 1.5.3 2020-09-09 [1] CRAN (R 4.0.2)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.0)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 4.0.0)
#> tibble 3.0.3 2020-07-10 [1] CRAN (R 4.0.2)
#> tidyselect 1.1.0 2020-05-11 [1] CRAN (R 4.0.0)
#> usethis 1.6.1 2020-04-29 [1] CRAN (R 4.0.0)
#> utf8 1.1.4 2018-05-24 [1] CRAN (R 4.0.0)
#> vctrs 0.3.4 2020-08-29 [1] CRAN (R 4.0.2)
#> withr 2.2.0 2020-04-20 [1] CRAN (R 4.0.0)
#> xfun 0.17 2020-09-09 [1] CRAN (R 4.0.2)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library
Upvotes: 2
Reputation: 28705
The output of mean_ci
is a vector of length 3. This is maybe unexpected because the package has added a print method so that when you see this in the console it looks like a single character value and not a numeric length > 1 vector. But, you can see the underlying data structure by looking at str
.
mean_ci(dat$num) %>% str
# 'qwraps2_mean_ci' Named num [1:3] 2.44 1.05 3.82
# - attr(*, "names")= chr [1:3] "mean" "lcl" "ucl"
# - attr(*, "alpha")= num 0.05
In summarize, each element of each column of the output needs to be length 1, so providing a length 3 object for summarize to put in a single "cell" (column element) results in an error. A workaround is to put the length 3 vector in a list, so that it is now a length 1 list. Then you can use unnest_wider
to separate it into 3 columns (and therefore making the table "wider")
library(tidyverse)
dat %>%
group_by(type) %>%
summarise( N=n(),
mean.ci = list(mean_ci(num)),
"Percent"= n_perc(num > 0)) %>%
unnest_wider(mean.ci)
# # A tibble: 2 x 6
# type N mean lcl ucl Percent
# <fct> <int> <dbl> <dbl> <dbl> <chr>
# 1 A 8 2.25 0.523 3.98 "6 (75.00\\%)"
# 2 B 8 2.62 0.344 4.91 "4 (50.00\\%)"
Upvotes: 6