Reputation: 47
I have used partition = community.best_partition(test_graph)
to get partitions from the networkX graph. I got a dictionary like this:
{node0: 0,
node1: 0,
node2: 0,
node3: 1,
node4: 1,
node5: 1,
node5: 2,
node6: 2,
...
}
in which keys are the nodes and values are community numbers. I want to find most degree centrality nodes in each community number. For example, in this case: in the community 1: I have 3 nodes, which of them have highest degree?
Upvotes: 2
Views: 1126
Reputation: 14516
If I understand this question correctly, the following code should give what you're after:
Code:
import community
import networkx as nx
# Generate test graph
G = nx.erdos_renyi_graph(30, 0.05)
# Relabel nodes
G = nx.relabel_nodes(G, {i: f"node_{i}" for i in G.nodes})
# Compute partition
partition = community.best_partition(G)
# Get a set of the communities
communities = set(partition.values())
# Create a dictionary mapping community number to nodes within that community
communities_dict = {c: [k for k, v in partition.items() if v == c] for c in communities}
# Filter that dictionary to map community to the node of highest degree within the community
highest_degree = {k: max(v, key=lambda x: G.degree(x)) for k, v in communities_dict.items()}
Output:
>>> partition
{'node_0': 0,
'node_1': 1,
'node_2': 2,
'node_3': 3,
...
'node_25': 3,
'node_26': 11,
'node_27': 12,
'node_28': 10,
'node_29': 10}
>>> highest_degree
{0: 'node_0',
1: 'node_1',
2: 'node_2',
3: 'node_3',
4: 'node_19',
5: 'node_9',
6: 'node_10',
7: 'node_11',
8: 'node_13',
9: 'node_21',
10: 'node_24',
11: 'node_26',
12: 'node_27'}
Upvotes: 1