Reputation: 17
I'm trying to standardize my fish numbers in different columns by an unique sampled area.
I've got the following simplified data set:
Year <- c(1990:2019)
Location_nr <- c(1:30)
df <- data.frame(Year,Location_nr)
df$Sample_surface <- sample(10, size = nrow(df), replace = TRUE)
df$Fish1 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish2 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish3 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish4 <- sample(0:500, size = nrow(df), replace = TRUE)
I would like to standardize fish numbers (column: Fish1, Fish2, Fish3 and Fish4) per row by:
(/"Sample_surface")/100
I've been stuck on this issue for more than a day now. I sincerely hope somebody can help me with this. Many thanks in advance!
Upvotes: 1
Views: 49
Reputation: 886938
We can do this in a vectorized way
cols<- grep('Fish', names(df))
df[cols] <- (df[cols]/df$Sample_surface)/100
head(df)
# Year Location_nr Sample_surface Fish1 Fish2 Fish3 Fish4
#1 1990 1 3 1.09666667 0.0500000 1.4100000 1.5300000
#2 1991 2 3 0.07333333 0.3833333 1.2233333 0.7033333
#3 1992 3 10 0.41000000 0.0930000 0.2850000 0.1730000
#4 1993 4 2 2.21500000 1.3050000 1.9750000 1.3600000
#5 1994 5 6 0.51333333 0.3900000 0.2633333 0.7416667
#6 1995 6 5 0.26800000 0.9100000 0.2400000 0.6020000
set.seed(123)
Year <- c(1990:2019)
Location_nr <- c(1:30)
df <- data.frame(Year,Location_nr)
df$Sample_surface <- sample(10, size = nrow(df), replace = TRUE)
df$Fish1 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish2 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish3 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish4 <- sample(0:500, size = nrow(df), replace = TRUE)
Upvotes: 0
Reputation: 3269
Another option would be to use dplyr
and tidyr
. In most cases, it is recommended to manipulate data in a tidy format.
df %>%
pivot_longer(-c(Year:Sample_surface), names_to = 'Fish', values_to = 'Value') %>%
mutate(Value = Value / Sample_surface / 100) %>%
pivot_wider(names_from = Fish, values_from = Value)
or
cbind(df %>% select(-starts_with('Fish')),
df %>% select(starts_with('Fish')) / df$Sample_surface / 100)
Upvotes: 0
Reputation: 388817
We can use sweep
to apply all the "Fish" column in row by corresponding Sample_surface
.
cols<- grep('Fish', names(df))
sweep(df[cols], 1, df$Sample_surface, `/`)/100
head(df)
# Year Location_nr Sample_surface Fish1 Fish2 Fish3 Fish4
#1 1990 1 3 1.0967 0.050 1.410 1.530
#2 1991 2 3 0.0733 0.383 1.223 0.703
#3 1992 3 10 0.4100 0.093 0.285 0.173
#4 1993 4 2 2.2150 1.305 1.975 1.360
#5 1994 5 6 0.5133 0.390 0.263 0.742
#6 1995 6 5 0.2680 0.910 0.240 0.602
Or we can use apply
row-wise
df[-c(1:3)] <- t(apply(df[-c(1:2)], 1, function(x) x[-1]/x[1]/100))
data
set.seed(123)
Year <- c(1990:2019)
Location_nr <- c(1:30)
df <- data.frame(Year,Location_nr)
df$Sample_surface <- sample(10, size = nrow(df), replace = TRUE)
df$Fish1 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish2 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish3 <- sample(0:500, size = nrow(df), replace = TRUE)
df$Fish4 <- sample(0:500, size = nrow(df), replace = TRUE)
Upvotes: 2