Reputation: 2871
I have a data frame as shown below
Tenancy_ID Unit_ID End_Date Rental_value
1 A 2012-04-26 10
2 A 2012-08-27 20
3 A 2013-04-27 50
4 A 2014-04-27 40
1 B 2011-06-26 10
2 B 2011-09-27 30
3 B 2013-04-27 60
4 B 2015-04-27 80
From the above I would like to prepare below data frame
Expected Output:
Unit_ID Avg_2011 Avg_2012 Avg_2013 Avg_2014 Avg_2015
A NaN 15 50 40 NaN
B 20 NaN 60 NaN 80
Steps:
Unit_ID = A, has two contracts in 2012 with rental value 10 and 20, Hence the average is 15.
Avg_2012 = Average rental value in 2012.
Upvotes: 2
Views: 44
Reputation: 862591
You can aggregate averages and reshape by Series.unstack
, last change columns names by DataFrame.add_prefix
and last data cleaning - DataFrame.reset_index
with DataFrame.rename_axis
:
df1 = (df.groupby(['Unit_ID', df['End_Date'].dt.year])['Rental_value']
.mean()
.unstack()
.add_prefix('Avg_')
.reset_index()
.rename_axis(None, axis=1))
print (df1)
Unit_ID Avg_2011 Avg_2012 Avg_2013 Avg_2014 Avg_2015
0 A NaN 15.0 50.0 40.0 NaN
1 B 20.0 NaN 60.0 NaN 80.0
Upvotes: 3
Reputation: 75080
Use pivot_table
directly with the s.dt.year
#df['End_Date']=pd.to_datetime(df['End_Date']) if dtype of End_Date is not datetime
final = (df.pivot_table('Rental_value','Unit_ID',df['End_Date'].dt.year)
.add_prefix('Avg_').reset_index().rename_axis(None,axis=1))
print(final)
Unit_ID Avg_2011 Avg_2012 Avg_2013 Avg_2014 Avg_2015
0 A NaN 15.0 50.0 40.0 NaN
1 B 20.0 NaN 60.0 NaN 80.0
Upvotes: 4