Reputation: 53
I am new to python and the last time I coded was in the mid-80's so I appreciate your patient help.
It seems .rolling(window) requires the window to be a fixed integer. I need a rolling window where the window or lookback period is dynamic and given by another column.
In the table below, I seek the Lookbacksum which is the rolling sum of Data as specified by the Lookback column.
d={'Data':[1,1,1,2,3,2,3,2,1,2],
'Lookback':[0,1,2,2,1,3,3,2,3,1],
'LookbackSum':[1,2,3,4,5,8,10,7,8,3]}
df=pd.DataFrame(data=d)
eg:
Data Lookback LookbackSum
0 1 0 1
1 1 1 2
2 1 2 3
3 2 2 4
4 3 1 5
5 2 3 8
6 3 3 10
7 2 2 7
8 1 3 8
9 2 1 3
Upvotes: 5
Views: 3267
Reputation: 6246
An exercise in pain, if you want to try an almost fully vectorized approach. Sidenote: I don't think it's worth it here. At all. Inspired by Divakar's answer here
Given:
import numpy as np
import pandas as pd
d={'Data':[1,1,1,2,3,2,3,2,1,2],
'Lookback':[0,1,2,2,1,3,3,2,3,1],
'LookbackSum':[1,2,3,4,5,8,10,7,8,3]}
df=pd.DataFrame(data=d)
Using the function from Divakar's answer, but slightly modified
from skimage.util.shape import view_as_windows as viewW
def strided_indexing_roll(a, r, fill_value=np.nan):
# Concatenate with sliced to cover all rolls
p = np.full((a.shape[0],a.shape[1]-1),fill_value)
a_ext = np.concatenate((p,a,p),axis=1)
# Get sliding windows; use advanced-indexing to select appropriate ones
n = a.shape[1]
return viewW(a_ext,(1,n))[np.arange(len(r)), -r + (n-1),0]
Now, we just need to prepare a 2d array for the data and independently shift the rows according to our desired lookback values.
arr = df['Data'].to_numpy().reshape(1, -1).repeat(len(df), axis=0)
shifter = np.arange(len(df) - 1, -1, -1) #+ d['Lookback'] - 1
temp = strided_indexing_roll(arr, shifter, fill_value=0)
out = strided_indexing_roll(temp, (len(df) - 1 - df['Lookback'])*-1, 0).sum(-1)
Output:
array([ 1, 2, 3, 4, 5, 8, 10, 7, 8, 3], dtype=int64)
We can then just assign it back to the dataframe as needed and check.
df['out'] = out
#output:
Data Lookback LookbackSum out
0 1 0 1 1
1 1 1 2 2
2 1 2 3 3
3 2 2 4 4
4 3 1 5 5
5 2 3 8 8
6 3 3 10 10
7 2 2 7 7
8 1 3 8 8
9 2 1 3 3
Upvotes: 1
Reputation: 75080
here is one with a list comprehension which stores the index and value of the column df['Lookback']
and the gets the slice by reversing the values and slicing according to the column value:
df['LookbackSum'] = [sum(df.loc[:e,'Data'][::-1].to_numpy()[:i+1])
for e,i in enumerate(df['Lookback'])]
print(df)
Data Lookback LookbackSum
0 1 0 1
1 1 1 2
2 1 2 3
3 2 2 4
4 3 1 5
5 2 3 8
6 3 3 10
7 2 2 7
8 1 3 8
9 2 1 3
Upvotes: 2
Reputation: 142126
You can create a custom function for use with df.apply
, eg:
def lookback_window(row, values, lookback, method='sum', *args, **kwargs):
loc = values.index.get_loc(row.name)
lb = lookback.loc[row.name]
return getattr(values.iloc[loc - lb: loc + 1], method)(*args, **kwargs)
Then use it as:
df['new_col'] = df.apply(lookback_window, values=df['Data'], lookback=df['Lookback'], axis=1)
There may be some corner cases but as long as your indices align and are unique - it should fulfil what you're trying to do.
Upvotes: 6