Reputation: 71
This program should delete the N-node in a singly linked list. If i put N = 1 or N = 2 it's ok, the program works. But with N = 0 the output prints infinite nodes with random values (after deleting the node 0). I think the program can't see the new head. Thx for the help!
#include <stdio.h>
#include <stdlib.h>
#define N 0
struct node {
int data;
struct node *next;
};
void printlist(struct node *head){
struct node *current=head;
int i=0;
while (current!=NULL){
printf("node number %d \t : %d\n", i, current->data);
current=current->next;
i++;
}
}
int deletenode(struct node *head,int n){
struct node *current=head;
struct node *previous=head;
int i=0;
while(current!= NULL){
if (n==i && i!=0){
previous->next=current->next;
free(current);
return 1;
}
else if (n==i && i==0){
head=head->next;
free(current);
return 1;
}
i++;
previous=current;
current=current->next;
return 0;
}
printf("error\n");
exit(EXIT_FAILURE);
}
void main(){
struct node *n1=malloc(sizeof(struct node));
struct node *n2=malloc(sizeof(struct node));
struct node *n3=malloc(sizeof(struct node));
struct node *head=n1;
n1->data=5;
n1->next=n2;
n2->data=10;
n2->next=n3;
n3->data=15;
n3->next=NULL;
printf("\n\nbefore\n");
printlist(head);
deletenode(head,N);
printf("\n\nafter\n");
printlist(head);
}
I'm using current
as a temp pointer , because after the head shift on the second node i need a pointer to the old head and use free.
Upvotes: 1
Views: 1175
Reputation: 385565
C always passes by value, so changing a parameter has no effect on the caller.
void foo(int i) {
i = 1234; // No effect on caller.
}
void foo(int *p) {
p = NULL; // No effect on caller.
}
If you want to modify a variable (such as the caller's head
), you need to pass a pointer to it. (You can still change that to which a pointer references.)
int deletenode(struct node **head, int n) {
...
}
deletenode(&head, N);
Now, you could simply replace every instance of head
in your code with (*head)
to account for the new calling convention, but that would waste an opportunity for simplification. By having a pointer to a struct node *
, we don't need to handle head
(a struct node *
) and prev_node->next
(a struct node *
) differently.
int delete_node_n(struct node **ptr, unsigned n) {
// Make `ptr` point to the pointer we want to modify.
// This will either be the `head` variable
// or the `next` field of some node.
while (1) {
if (!*ptr)
return 0;
if (!n)
break;
ptr = &( (*ptr)->next );
--n;
}
struct node *to_free = *ptr;
*ptr = (*ptr)->next;
free(to_free);
return 1;
}
Upvotes: 1