Reputation: 41
I found that solution (https://itnext.io/converting-pytorch-float-tensor-to-android-rgba-bitmap-with-kotlin-ffd4602a16b6) but when I tried to convert that way I found that the size of inputTensor.dataAsFloatArray
is more than bitmap.width*bitmap.height
. How works converting tensor to float array or is there any other possible method to convert pytorch tensor to bitmap?
val inputTensor = TensorImageUtils.bitmapToFloat32Tensor(
bitmap,
TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB
)
// Float array size is 196608 when width and height are 256x256 = 65536
val res = floatArrayToGrayscaleBitmap(inputTensor.dataAsFloatArray, bitmap.width, bitmap.height)
fun floatArrayToGrayscaleBitmap (
floatArray: FloatArray,
width: Int,
height: Int,
alpha :Byte = (255).toByte(),
reverseScale :Boolean = false
) : Bitmap {
// Create empty bitmap in RGBA format (even though it says ARGB but channels are RGBA)
val bmp = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888)
val byteBuffer = ByteBuffer.allocate(width*height*4)
Log.d("App", floatArray.size.toString() + " " + (width * height * 4).toString())
// mapping smallest value to 0 and largest value to 255
val maxValue = floatArray.max() ?: 1.0f
val minValue = floatArray.min() ?: 0.0f
val delta = maxValue-minValue
var tempValue :Byte
// Define if float min..max will be mapped to 0..255 or 255..0
val conversion = when(reverseScale) {
false -> { v: Float -> ((v-minValue)/delta*255).toByte() }
true -> { v: Float -> (255-(v-minValue)/delta*255).toByte() }
}
// copy each value from float array to RGB channels and set alpha channel
floatArray.forEachIndexed { i, value ->
tempValue = conversion(value)
byteBuffer.put(4*i, tempValue)
byteBuffer.put(4*i+1, tempValue)
byteBuffer.put(4*i+2, tempValue)
byteBuffer.put(4*i+3, alpha)
}
bmp.copyPixelsFromBuffer(byteBuffer)
return bmp
}
Upvotes: 4
Views: 1786
Reputation: 41
None of the answers were able to produce the output I wanted, so this is what I came up with - it is basically only reverse engineered version of what happenes in TensorImageUtils.bitmapToFloat32Tensor()
.
Please note that this function only works if you are using MemoryFormat.CONTIGUOUS
(which is default) in TensorImageUtils.bitmapToFloat32Tensor()
.
fun tensor2Bitmap(input: FloatArray, width: Int, height: Int, normMeanRGB: FloatArray, normStdRGB: FloatArray): Bitmap? {
val pixelsCount = height * width
val pixels = IntArray(pixelsCount)
val output = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888)
val conversion = { v: Float -> ((v.coerceIn(0.0f, 1.0f))*255.0f).roundToInt()}
val offset_g = pixelsCount
val offset_b = 2 * pixelsCount
for (i in 0 until pixelsCount) {
val r = conversion(input[i] * normStdRGB[0] + normMeanRGB[0])
val g = conversion(input[i + offset_g] * normStdRGB[1] + normMeanRGB[1])
val b = conversion(input[i + offset_b] * normStdRGB[2] + normMeanRGB[2])
pixels[i] = 255 shl 24 or (r.toInt() and 0xff shl 16) or (g.toInt() and 0xff shl 8) or (b.toInt() and 0xff)
}
output.setPixels(pixels, 0, width, 0, 0, width, height)
return output
}
Example usage then could be as follows:
tensor2Bitmap(outputTensor.dataAsFloatArray, bitmap.width, bitmap.height, TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB)
Upvotes: 1
Reputation: 1
// I faced the same problem, and I found the function itself
TensorImageUtils.bitmapToFloat32Tensor()
tortures the RGB colorspace. You should try to convert yuv to a bitmap and use
TensorImageUtils.bitmapToFloat32Tensor
instead for NOW.
// I modified the code from phillies (up) to get the coloful bitmap. Note that the format of an output tensor is typically NCHW.
// Here's my function in Kotlin. Hopefully it works in your case:
private fun floatArrayToBitmap(floatArray: FloatArray, width: Int, height: Int) : Bitmap {
// Create empty bitmap in ARGB format
val bmp: Bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888)
val pixels = IntArray(width * height * 4)
// mapping smallest value to 0 and largest value to 255
val maxValue = floatArray.max() ?: 1.0f
val minValue = floatArray.min() ?: -1.0f
val delta = maxValue-minValue
// Define if float min..max will be mapped to 0..255 or 255..0
val conversion = { v: Float -> ((v-minValue)/delta*255.0f).roundToInt()}
// copy each value from float array to RGB channels
for (i in 0 until width * height) {
val r = conversion(floatArray[i])
val g = conversion(floatArray[i+width*height])
val b = conversion(floatArray[i+2*width*height])
pixels[i] = rgb(r, g, b) // you might need to import for rgb()
}
bmp.setPixels(pixels, 0, width, 0, 0, width, height)
return bmp
}
Hopefully future releases of PyTorch Mobile will fix this bug.
Upvotes: 0