Reputation: 4334
I want to name the outputs of a subclassed TensorFlow Keras Model
, so I can pass targets to them in fit()
, e.g. self.model.fit(np_inputs, {'q_values': np_targets}, verbose=0)
The model looks like this:
class MyModel(tf.keras.models.Model):
def __init__(self, name):
super(MyModel, self).__init__()
self.input_layer = tf.keras.Input(shape=(BOARD_SIZE * 3,))
self.d1 = tf.keras.layers.Dense(BOARD_SIZE * 3 * 9, activation='relu')
self.d2 = tf.keras.layers.Dense(BOARD_SIZE * 3 * 100, activation='relu')
self.d3 = tf.keras.layers.Dense(BOARD_SIZE * 3 * 9, activation='relu')
self.q_values_l = tf.keras.layers.Dense(BOARD_SIZE, activation=None, name='q_values')
self.probabilities_l = tf.keras.layers.Softmax(name='probabilities')
@tf.function
def call(self, input_data):
x = self.d1(input_data)
x = self.d2(x)
x = self.d3(x)
q = self.q_values_l(x)
p = self.probabilities_l(q)
return p, q
I naively assumed the name of the corresponding layers would also be assigned to the outputs, but this does not seem to be the case.
I only have targets to 1 of the outputs, thus the need to exactly specify what output the targets are for when calling fit()
.
In the functional way of using Keras this works well, but I can't replicate it in the subclass approach. I can't use the functional Keras way in my case for unrelated reasons.
Upvotes: 0
Views: 174
Reputation: 86600
Why not just pass a dummy target?
model.fit(np_inputs, [np.zeros((len(np_inputs),)), np_targets], ...)
Maybe even None
can be passed instead of np.zeros
.
You can compile the model exactly the same way:
model.compile(loss=[p_loss, q_loss], ...)
Upvotes: 1