Reputation: 491
Correct me if I'm wrong, but from my understanding, "database caches" are usually implemented with an in-memory database that is local to the web server (same machine as the web server). Also, these "database caches" store the actual results of queries. I have also read up on the multiple caching strategies like - Cache Aside, Read Through, Write Through, Write Behind, Write Around.
For some context, the Write Through strategy looks like this: and the Cache Aside strategy looks like this:
I believe that the "Application" refers to a backend server with a REST API.
My first question is, in the Write Through strategy (application writes to cache, cache then writes to database), how does this work? From my understanding, the most commonly used database caches are Redis or Memcached - which are just key-value stores. Suppose you have a relational database as the main database, how are these key-value stores going to write back to the relational database? Do these strategies only apply if your main database is also a key-value store?
In a Write Through (or Read Through) strategy, the cache sits in between the application and the database. How does that even work? How do you get the cache to talk to the database server? From my understanding, the web server (the application) is always the one facilitating the communication between the cache and the main database - which is basically a Cache Aside strategy. Unless Redis has some kind of functionality that allows it to talk to another database, I don't quite understand how this works.
Isn't it possible to mix and match caching strategies? From how I see it, Cache Aside and Read Through are caching strategies for application reads (user wants to read data), while Write Through and Write Behind are caching strategies for application writes (user wants to write data). Couldn't you have a strategy that uses both Cache Aside and Write Through? Why do most articles always seem to portray them as independent strategies?
What happens if you have a cluster of webs servers? Do they each have their own local in-memory database that acts as a cache?
Could you implement a cache using a normal (not in-memory) database? I suppose this would still be somewhat useful since you do not need to make an additional network hop to the database server (since the cache lives on the same machine as the web server)?
Upvotes: 2
Views: 2022
Reputation: 414
I guess you have one misunderstood point, that the cache is NOT expclicitely stored on the same server as the werbserver. Sometimes, not even the database is sperated on it's own server from the webserver. If you think of APIs, like HTTP REST APIs, you can use caching to not spend too many resources on database connections & queries. Generally, you want to use as few database connections & queries as possible. Now imagine the following setting:
You have a werbserver who serves your application and a REST API, which is used by the webserver to work with some resources. Those resources come from a database (lets say a relational database) which is also stored on the same server. Now there is one endpoint which serves e.g. a list of posts
(like blog-posts). Every user can fetch all posts (to make it simple in this example). Now we have a case where one can say that this API request could be cached, to not let all users always trigger the database, just to query the same resources (via the REST API) over and over again. Here comes caching. Redis is one of many tools which can be used for caching. Since redis is a simple in-memory key-value storage, you can just put all of your posts (remember the REST API) after the first DB-query, into the cache. All future requests for the posts-list would first check whether the posts are alreay cached or not. If they are, the API will return the cache-content for this specific request.
This is one simple example to show off, what caching can be used for.
My first question is, why would you ever write to a cache?
To reduce the amount of database connections and queries.
how is writing to these key-value stores going to help with updating the relational database?
It does not help you with updating, but instead it helps you with spending less resources. It also helps you in terms of "temporary backing up" some data - but that only as a very little side effect. For this, out there are more attractive solutions (Since redis is also not persistent by default. But it supports persistence.)
Do these cache writing strategies only apply if your main database is also a key-value store?
No, it is not important which database you use. Whether it's a NoSQL or SQL DB. It strongly depends on what you want to cache and how the database and it's tables are set up. Do you have frequent changes in your recources? Do resources get updated manually or only on user-initiated actions? Those are questions, leading you to the right caching implementation.
Isn't it possible to mix and match caching strategies?
I am not an expert at caching strategies, but let me try: I guess it is possible but it also, highly depends on what you are doing in your DB and what kind of application you have. I guess if you find out what kind of application you are building up, then you will know, what strategy you have to use - i guess it is also not recommended to mix those strategies up, because those strategies are coupled to your application type - in other words: It will not work out pretty well.
What happens if you have a cluster of webs servers? Do they each have their own local in-memory database that acts as a cache?
I guess that both is possible. Usually you have one database, maybe clustered or synchronized with copies, to which your webservers (e.g. REST APIs) make their requests. Then whether each of you API servers would have it's own cache, to not query the database at all (in cloud-based applications your database is also maybe on another separated server - so another "hop" in terms of networking). OR (what i also can imagine) you have another middleware between your APIs (clusterd up) and your DB (maybe also clustered up) - but i guess that no one would do that because of the network traffic. It would result in a higher response-time, what you usually want to prevent.
Could you implement a cache using a normal (not in-memory) database?
Yes you could, but it would be way slower. A machine can access in-memory data faster then building up another (local) connection to a database and query your cached entries. Also, because your database has to write the entries into files on your machine, to persist the data.
All in all, it is all about being fast in terms of response times and to prevent much network traffic. I hope that i could help you out a little bit.
Upvotes: 2