Reputation: 1975
I'm trying to use Tensorflow module in a Python application running in a Docker container (actually I am using Keras but errors come from Tensorflow)
I have models (.json
and .h5
files) that I would like to load in order to use it :
import logging
import os
from keras.models import model_from_json # library for machine learning
from numpy import array
import json
def load_models():
global loaded_h_model
global loaded_u_model
global loaded_r_model
global loaded_c_model
modelPath = os.getenv("MODELPATH", "./models/")
# load models
json_h_file = open(modelPath+'model_HD.json', 'r')
loaded_model_h_json = json_h_file.read()
json_h_file.close()
loaded_h_model = model_from_json(loaded_model_h_json)
loaded_h_model.load_weights(modelPath+"model_HD.h5")
json_u_file = open(modelPath+'model_UD.json', 'r')
loaded_model_u_json = json_u_file.read()
json_u_file.close()
loaded_u_model = model_from_json(loaded_model_u_json)
loaded_u_model.load_weights(modelPath+"model_UD.h5")
json_r_file = open(modelPath+'model_RD.json', 'r')
loaded_model_r_json = json_r_file.read()
json_r_file.close()
loaded_r_model = model_from_json(loaded_model_r_json)
loaded_r_model.load_weights(modelPath+"model_RD.h5")
json_c_file = open(modelPath+'model_CD.json', 'r')
loaded_model_c_json = json_c_file.read()
json_c_file.close()
loaded_c_model = model_from_json(loaded_model_c_json)
loaded_c_model.load_weights(modelPath+"model_CD.h5")
Here is the Dockerfile I use:
FROM python:3.7
# copy source code files
COPY machinelearning.py ./
# copy models files
COPY models/* ./models/
# install dependencies
RUN pip3 install --upgrade pip \
&& pip3 install h5py \
&& pip3 install tensorflow \
&& pip3 install keras
# run script
CMD [ "python", "./machinelearning.py" ]
But when I run the Docker container, I have the following Warnings/Errors:
2020-01-29 09:40:24.542588: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory
2020-01-29 09:40:24.542727: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory
2020-01-29 09:40:24.542743: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
Using TensorFlow backend.
2020-01-29 09:40:25.394254: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2020-01-29 09:40:25.394289: E tensorflow/stream_executor/cuda/cuda_driver.cc:351] failed call to cuInit: UNKNOWN ERROR (303)
2020-01-29 09:40:25.394321: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (dd231f397f1f): /proc/driver/nvidia/version does not exist
2020-01-29 09:40:25.394539: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2020-01-29 09:40:25.419513: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1992000000 Hz
2020-01-29 09:40:25.420250: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55cab5bf9760 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-01-29 09:40:25.420299: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
I believe I need to install libraries or a different version of Tensorflow/Keras in my Dockerfile.
How can I solve this issue ? Thanks
Upvotes: 1
Views: 1426
Reputation: 4991
First of all, you need to COPY requirements.txt /to/destination
. your requirements.txt should contain dependencies with the version number.
FROM python:latest
COPY requirements.txt /usr/src/code/
After that run
RUN pip3 install -r requirements.txt
Instead of below code in your Dockerfile
RUN pip3 install --upgrade pip \
&& pip3 install h5py \
&& pip3 install tensorflow \
&& pip3 install keras
I hope the problem will get resolved by mentioning version numbers in requirements.txt, not just --upgrade tag.
Also don't run upgrades if not needed.
Upvotes: 6