Reputation: 17933
Given a pandas DataFrame
that contains a column with list values
> pd.DataFrame.from_dict(
{'name' : {0 : 'foo', 1: 'bar', 2: 'baz', 3: 'foz'},
'Attributes': {0: ['x', 'y'], 1: ['y', 'z'], 2: ['x', 'z'], 3: []}
})
name Attributes
0 foo ['x', 'y']
1 bar ['y', 'z']
2 baz ['x', 'z']
3 foz []
How can the DataFrame be filtered for only those rows don't contain a certain value, e.g. 'y'
, in the lists:
2 baz ['x', 'z']
3 foz []
Thank you in advance for your consideration and response.
Upvotes: 1
Views: 259
Reputation: 577
This should work (although it's not very elegant)
def filter_data_frame(df):
good_index = []
for i in range(len(df)):
if "y" not in df.iloc[i,1]:
good_index.append(i)
return df.iloc[good_index, :]
Upvotes: 1
Reputation: 75080
you can convert the series of list to a dataframe and compare if all the columns are not equal to y
:
# is they aren't actual list : df['Attributes'] = df['Attributes'].apply(ast.literal_eval)
df[pd.DataFrame(df['Attributes'].tolist()).ne('y').all(1)]
Name Attributes
2 baz [x, z]
If they are not actual lists:
df[df['Attributes'].str.count('y').eq(0)]
Upvotes: 4