Reputation: 3848
I have three arrays, a
, b
and c
. Shapes are (N, 2)
, (N, 3)
, (N, 3)
respectively.
I need to compare elements per row in b
and update an index in the same row on a
. I thought I had understood how to vectorize this method, but I think my dimensions are incorrect.
What I currently have is:
def to_cube(points):
cube = np.empty((len(points), 3), dtype=np.half)
delta = np.empty_like(cube)
q = ((2 / 3) * points[:, 0]) / 0.1
r = (((-1 / 3) * points[:, 0]) + ((np.sqrt(3) / 3) * points[:, 1])) / 0.1
cube[:, 0] = np.round(q)
cube[:, 1] = np.round(-q-r)
cube[:, 2] = np.round(r)
delta[:, 0] = np.abs(cube[:, 0] - q)
delta[:, 1] = np.abs(cube[:, 1] - (-q-r))
delta[:, 2] = np.abs(cube[:, 2] - r)
if delta[:, 0] > delta[:, 1] and delta[:, 1] > delta[:, 2]:
cube[:, 0] = -cube[:, 1] - cube[:, 2]
elif delta[:, 1] > delta[:, 2]:
cube[:, 1] = -cube[:, 0] - cube[:, 2]
else:
cube[:, 2] = -cube[:, 0] - cube[:, 1]
return cube
This throws a ValueError: The truth value of an array with more than one element is ambiguous
.
After looking at the conditionals, its clear that the first check of delta[:, 0] > delta[:, 1]
will return an array of shape (N, 1)
. How do I change this to go for each row in a
, grab the appropriate indices on that row, then update the same row in b
for a specific index based on conditionals?
Edit: sample
This samples assumes that q
and r
are done. These matrices represent cube
and delta
:
>>> cube
array([[275.0, -400.0, 124.0]], dtype=float16) # so this is a (1, 3) but could be (N, 3)
>>> cube[0]
array([275.0, -400.0, 124.0], dtype=float16)
>>> delta
array([[5., 10., 3.]], dtype=float16)
>>> delta[0]
array([5., 10., 3.], dtype=float16)
Now execute through the conditionals (values are sub'd in):
if 5.0 > 10.0 and 10.0 > 3.0:
cube[0] = -(-400.0) - 124.0
elif 10.0 > 3.0:
cube[1] = -(275.0) - 124.0
else:
cube[2] = -(275.0) - (-400.0)
return cube # array([275.0, -(275.0) - 124.0, 124.0], dtype=float16)
This shows what happens per row, now I need to do it for all rows.
Edit: potential solution (is it vectorized?)
There is a way to ensure the rows are accessed independently using a for-range
:
def to_cube(points):
cube = np.empty((len(points), 3), dtype=np.half)
delta = np.empty_like(cube)
q = ((2 / 3) * points[:, 0]) / 0.1
r = (((-1 / 3) * points[:, 0]) + ((np.sqrt(3) / 3) * points[:, 1])) / 0.1
cube[:, 0] = np.round(q)
cube[:, 1] = np.round(-q-r)
cube[:, 2] = np.round(r)
delta[:, 0] = np.abs(cube[:, 0] - q)
delta[:, 1] = np.abs(cube[:, 1] - (-q-r))
delta[:, 2] = np.abs(cube[:, 2] - r)
for i in range(len(cube)):
if delta[i, 0] > delta[i, 1] and delta[i, 1] > delta[i, 2]:
cube[i, 0] = -cube[i, 1] - cube[i, 2]
elif delta[i, 1] > delta[i, 2]:
cube[i, 1] = -cube[i, 0] - cube[i, 2]
else:
cube[i, 2] = -cube[i, 0] - cube[i, 1]
return cube
However, I am now "looping over" the arrays, doesn't seem vectorized or broadcasted.
Upvotes: 1
Views: 77
Reputation: 3848
To anybody interested, this is how I solved the problem:
def to_cube(points):
cube = np.empty((len(points), 3), dtype=np.half)
delta = np.empty_like(cube)
q = ((2 / 3) * points[:, 0]) / 0.1
r = (((-1 / 3) * points[:, 0]) + ((np.sqrt(3) / 3) * points[:, 1])) / 0.1
cube[:, 0] = np.round(q)
cube[:, 1] = np.round(-q-r)
cube[:, 2] = np.round(r)
delta[:, 0] = np.abs(cube[:, 0] - q)
delta[:, 1] = np.abs(cube[:, 1] - (-q-r))
delta[:, 2] = np.abs(cube[:, 2] - r)
# define boolean arrays for where conditions exist
rxc = ((delta[:, 0] > delta[:, 1]) & (delta[:, 1] > delta[:, 2]))
ryc = (delta[:, 1] > delta[:, 2])
rzc = ~(rxc + ryc)
# update just those indices by condition
cube[rxc, 0] = -cube[rxc, 1] - cube[rxc, 2]
cube[ryc, 1] = -cube[ryc, 0] - cube[ryc, 2]
cube[rzc, 2] = -cube[rzc, 0] - cube[rzc, 1]
return cube
If anybody sees room for improvement's optimizations, I'd love to know!
A benchmark on my system:
import numpy as np
from timeit import timeit
u = np.random.uniform
points = np.array([[u(0, 50), u(0, 50)] for _ in range(37000000)], dtype=np.half)
p = 'from __main__ import points, to_cube; to_cube(points)'
timeit(p, number=1)
# output: 17.94858811999
Upvotes: 1