Reputation: 1858
I'm learning Scala and in a book that I'm reading (Functional Programming in Scala) I came across an example of a custom List
implementation in Scala which goes like this:
sealed trait MyList[+A]
case object MyNil extends MyList[Nothing]
case class Cons[+A](head: A, tail: MyList[A]) extends MyList[A]
object MyList {
def apply[A](as: A*): MyList[A] =
if (as.isEmpty) MyNil
else Cons(as.head, apply(as. tail: _*))
}
I would like to extend MyList
to add the following functionality:
add a tail
method that returns all elements of a MyList
instance without the first one, e.g. val x = MyList(1,2,3); x.tail == MyList(2,3)
.
Add a sum
method that is only applicable when MyList
contains Int
s (or even better for all numeric types). So e.g. val x = MyList(1,2,3); x.sum == 6
The idea above 2 questions is to understand: (1) how to interact with the instance of my class and (2) how to use polymorphism in a situation like this. After some searching around, I'm not even sure how to begin with these problems, which is why I'm asking this question.
Any tips would be appreciated. Many thanks!
UPDATE:
A few updates:
First, I'd like to point out that the solution to the programming challenges in the Functional Programming course that I mentioned earlier can be found here, however, I'm looking for something a little different than what the author is asking for.
I've managed to find an answer to my first question "how can I use tail
on my instance itself, e.g. MyList(1,2,3).tail
?". To solve this, I had to modify the original trait in the following manner:
sealed trait MyList[+A] {
def tail: MyList[A] = MyList.tail(this)
}
I'm not sure if this is the best way of doing what I want to do, but it works. If anyone has better suggestions, please let me know.
The second part is harder. I wanted to add the following inside the same trait:
def sum[Int]: MyList[Int] = MyList.sum(this)
But IntelliJ is complaining about the type of this
which is A
and I need to apply this conditionally on this
being of type Int
.
Another alternative is to do the following:
def sum: Int = this match {
case x: MyList[Int] => MyList.sum(x)
}
But what if we want to create another implementation for String
that will also return a String
? This cannot be the right solution and I haven't found one yet. Please help :)
Upvotes: 2
Views: 945
Reputation: 51271
I note that your Cons
class already has a public tail
member. I'd be tempted to start there and just make it universal...
sealed trait MyList[+A] {
def tail: MyList[A]
}
...and add the MyNil
implementation.
case object MyNil extends MyList[Nothing] {
def tail: MyList[Nothing] =
throw new java.lang.UnsupportedOperationException("tail of empty list")
}
This is how the standard library List
handles the tail of an empty list. Another, perhaps gentler, option would be to return this
so that the tail of an empty MyList
is just the empty MyList
.
Leaving class Cons
and object MyList
unchanged, we get the expected results.
MyList('s','h','o','w').tail //res0: MyList[Char] = Cons(h,Cons(o,Cons(w,MyNil)))
MyList(9).tail.tail //java.lang.Unsupported...
This is a bit trickier. We want each .sum
invocation to compile only if the elements are of a sum-able type, such as Int
. The Scala way to achieve this to require that the call site provide implicit "evidence" that the element type is acceptable.
sealed trait MyList[+A] {
def sum(implicit ev : A =:= Int) : Int //can sum only if A is Int
}
Alas, this won't compile because MyList
is covariant on A
, but being the type of a passed parameter puts A
in a contra-variant position.
Error: covariant type A occurs in invariant position in type A =:= Int of value ev
Fortunately there's a fix for that: use a different type parameter, related to A
but not restricted to its covariant relationship.
sealed trait MyList[+A] {
def sum[B >: A](implicit ev : B =:= Int) : Int = 0 //default behavior
}
case object MyNil extends MyList[Nothing] { ... //unchanged
case class Cons[+A](head: A, tail: MyList[A]) extends MyList[A] {
override def sum[B >: A](implicit ev :B =:= Int) : Int = head + tail.sum[B]
}
object MyList { ... //unchanged
MyList(23,31,12).sum //res0: Int = 66
MyList("as","is").sum //won't compile
Well that works for Int
, but it would be a pain to have to do the same for every sum-able type. Fortunately the standard library offers the Numeric
typeclass which provides some basic values (zero
and one
) and operations (plus()
, minus()
, times()
, etc.) for all the numeric types under its umbrella (Short
, Long
, Float
, etc.).
So, putting it all together:
sealed trait MyList[+A] {
val tail: MyList[A]
def sum[B >: A](implicit ev : Numeric[B]): B = ev.zero
}
case object MyNil extends MyList[Nothing] {
val tail: MyList[Nothing] = this
}
case class Cons[+A](head: A, tail: MyList[A]) extends MyList[A] {
override def sum[B >: A](implicit ev : Numeric[B]): B = ev.plus(head, tail.sum[B])
}
object MyList {
def apply[A](as: A*): MyList[A] =
if (as.isEmpty) MyNil else Cons(as.head, apply(as.tail: _*))
}
Upvotes: 3