Reputation: 831
I have to train two models: modelA
and modelB
with different optimizer
and hiddenLayers
. I would like to take outputs as a combination between them, resulting as
# w = weight I give to each model
output_modelC = output_modelA * w + output_modelB * (1 - w)
Both models share the same Input
, but, after creating their compile
, I don`t know how to follow it.
My code is this:
Input = keras.layers.Input(shape=(2,))
#modelA
Hidden_A_1 = keras.layers.Dense(units=20)(Input)
Hidden_A_2 = keras.layers.Dense(units=20)(Hidden_A_1)
Output_A = keras.layers.Dense(units=1, activation='sigmoid')(Hidden_A_2)
optimizer_A = keras.optimizers.SGD(lr=0.00001, momentum=0.09, nesterov=True)
model_A = keras.Model(inputs=Input, outputs=Output_A)
model_A.compile(loss="binary_crossentropy",
optimizer=optimizer_slow,
metrics=['accuracy'])
#modelB
Hidden1_B = keras.layers.Dense(units=10, activation='relu')(Input)
Output_B = keras.layers.Dense(units=1, activation='sigmoid')(Hidden1_B)
model_B = keras.Model(inputs=Input, outputs=Output_B)
optimizer_B = keras.optimizers.Adagrad()
model_B.compile(loss="binary_crossentropy",
optimizer=optimizer_B,
metrics=['accuracy'])
Upvotes: 0
Views: 88
Reputation: 4264
Assuming that you will be providing the value of w
the following code might help you:
import keras
Input = keras.layers.Input(shape=(784,))
#modelA
Hidden_A_1 = keras.layers.Dense(units=20)(Input)
Hidden_A_2 = keras.layers.Dense(units=20)(Hidden_A_1)
Output_A = keras.layers.Dense(units=1, activation='sigmoid')(Hidden_A_2)
optimizer_A = keras.optimizers.SGD(lr=0.00001, momentum=0.09, nesterov=True)
model_A = keras.Model(inputs=Input, outputs=Output_A)
model_A.compile(loss="binary_crossentropy",
optimizer=optimizer_A,
metrics=['accuracy'])
#modelB
Hidden1_B = keras.layers.Dense(units=10, activation='relu')(Input)
Output_B = keras.layers.Dense(units=1, activation='sigmoid')(Hidden1_B)
model_B = keras.Model(inputs=Input, outputs=Output_B)
optimizer_B = keras.optimizers.Adagrad()
model_B.compile(loss="binary_crossentropy",
optimizer=optimizer_B,
metrics=['accuracy'])
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
model_A.fit(x_train,y_train)
model_B.fit(x_train,y_train)
w = 0.8
output_modelC = model_A.predict(x_test) * w + model_B.predict(x_test) * (1 - w)
Sample Output:
array([[0.98165023],
[0.9918817 ],
[0.93426293],
...,
[0.99940777],
[0.9960805 ],
[0.9992139 ]], dtype=float32)
It may not be the right sample data that I have picked, but this is just to show how to combine both the networks.
Upvotes: 1