Reputation: 91
Connection to databricks works fine, working with DataFrames goes smoothly (operations like join, filter, etc).
The problem appears when I call cache
on a dataframe.
py4j.protocol.Py4JJavaError: An error occurred while calling o342.cache.
: java.io.InvalidClassException: failed to read class descriptor
...
Caused by: java.lang.ClassNotFoundException: org.apache.spark.rdd.RDD$client53442a94a3$$anonfun$mapPartitions$1$$anonfun$apply$23
at java.lang.ClassLoader.findClass(ClassLoader.java:523)
at org.apache.spark.util.ParentClassLoader.findClass(ParentClassLoader.java:35)
at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
at org.apache.spark.util.ParentClassLoader.loadClass(ParentClassLoader.java:40)
at org.apache.spark.util.ChildFirstURLClassLoader.loadClass(ChildFirstURLClassLoader.java:48)
at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:257)
at org.apache.spark.sql.util.ProtoSerializer.org$apache$spark$sql$util$ProtoSerializer$$readResolveClassDescriptor(ProtoSerializer.scala:4316)
at org.apache.spark.sql.util.ProtoSerializer$$anon$4.readClassDescriptor(ProtoSerializer.scala:4304)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1857)
... 71 more
I work with java8 as required, clearing pycache doesn't help. The same code submitted as a job to databricks works fine. It looks like a local problem on a bridge python-jvm level but java version (8) and python (3.7) is as required. Switching to java13 produces quite the same message.
Versions databricks-connect==6.2.0
, openjdk version "1.8.0_242"
, Python 3.7.6
EDIT: Behavior depends on how DF is created, if the source of DF is external then it works fine, if DF is created locally then such error appears.
# works fine
df = spark.read.csv("dbfs:/some.csv")
df.cache()
# ERROR in 'cache' line
df = spark.createDataFrame([("a",), ("b",)])
df.cache()
Upvotes: 1
Views: 9153
Reputation: 571
This is a known issue and I think a recent patch fixed it. This was seen for Azure, I am not sure whether you are using which Azure or AWS but it's solved. Please check the issue - https://github.com/MicrosoftDocs/azure-docs/issues/52431
Upvotes: 1