Peter
Peter

Reputation: 564

Convert a Column(str) to (Float) ,ValueError: could not convert string to float: 'Null'

Im sorry folks, I know this question have been answered before,I tried all answers also research and tried different things for 4 hours. I could not get done.

I believe my data has something weird..

so following my data and my attempts:

x = pd.DataFrame({ "Cost" : [ "83.53462540716612" , "0.0" , "66.6315396408911" , "340.9281334351922" , "181.8128056341571" , "0.00" ]

My attempts:

###Attempt 0
# x["Cost"] = x["Cost"].str.replace(' ', '')
# x["Cost"] = x["Cost"].str.replace(',', '').astype(float)


###Attempt 1
#x = x.where((pd.notnull(x)), None)
#x["Cost"]  = float(len(x["Cost"]))


###Attempt 2
#x["Cost"].isdecimal()
#x = [float(x) for x in range(len(x["Cost"])) ]


###Attempt 3
#[float(x) for x in x["Cost"].strip().split()]


###Attempt 4
#x["Cost2"] = x["Cost"].append([float(str(x)) for x in x["Cost"].split(' ') if len(x)>1])


###Attempt 5
#x["Cost"]  = pd.get_dummies(x["Cost"]).values


Nothing works.. getting errors such:

ValueError: could not convert string to float: 'Null'

# else, only a single dtype is given
# _astype_nansafe works fine with 1-d only
# TODO(extension)
# Explicit copy, or required since NumPy can't view from / to object.

Upvotes: 3

Views: 9948

Answers (1)

Alexander
Alexander

Reputation: 109528

You can use pd.to_numeric, and coerce errors so that they result in NaN values if they cannot be converted.

x = pd.DataFrame({ "Cost" : [ "Null", "1,083.53462540716612" , "0.0" , "66.6315396408911" , "340.9281334351922" , "181.8128056341571" , "0.00" ]})

x['Cost'] = pd.to_numeric(x['Cost'].str.replace(",", ""), errors='coerce')
>>> x

          Cost
0          NaN
1  1083.534625
2     0.000000
3    66.631540
4   340.928133
5   181.812806
6     0.000000

Upvotes: 6

Related Questions